ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Elsevier  (43)
  • 2020-2023  (6)
  • 1950-1954  (37)
Collection
Years
Year
  • 1
    Publication Date: 2022-05-25
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Jacox, M. G., Alexander, M. A., Siedlecki, S., Chen, K., Kwon, Y., Brodie, S., Ortiz, I., Tommasi, D., Widlansky, M. J., Barrie, D., Capotondi, A., Cheng, W., Di Lorenzo, E., Edwards, C., Fiechter, J., Fratantoni, P., Hazen, E. L., Hermann, A. J., Kumar, A., Miller, A. J., Pirhalla, D., Buil, M. P., Ray, S., Sheridan, S. C., Subramanian, A., Thompson, P., Thorne, L., Annamalai, H., Aydin, K., Bograd, S. J., Griffis, R. B., Kearney, K., Kim, H., Mariotti, A., Merrifield, M., & Rykaczewski, R. Seasonal-to-interannual prediction of North American coastal marine ecosystems: forecast methods, mechanisms of predictability, and priority developments. Progress in Oceanography, 183, (2020): 102307, doi:10.1016/j.pocean.2020.102307.
    Description: Marine ecosystem forecasting is an area of active research and rapid development. Promise has been shown for skillful prediction of physical, biogeochemical, and ecological variables on a range of timescales, suggesting potential for forecasts to aid in the management of living marine resources and coastal communities. However, the mechanisms underlying forecast skill in marine ecosystems are often poorly understood, and many forecasts, especially for biological variables, rely on empirical statistical relationships developed from historical observations. Here, we review statistical and dynamical marine ecosystem forecasting methods and highlight examples of their application along U.S. coastlines for seasonal-to-interannual (1–24 month) prediction of properties ranging from coastal sea level to marine top predator distributions. We then describe known mechanisms governing marine ecosystem predictability and how they have been used in forecasts to date. These mechanisms include physical atmospheric and oceanic processes, biogeochemical and ecological responses to physical forcing, and intrinsic characteristics of species themselves. In reviewing the state of the knowledge on forecasting techniques and mechanisms underlying marine ecosystem predictability, we aim to facilitate forecast development and uptake by (i) identifying methods and processes that can be exploited for development of skillful regional forecasts, (ii) informing priorities for forecast development and verification, and (iii) improving understanding of conditional forecast skill (i.e., a priori knowledge of whether a forecast is likely to be skillful). While we focus primarily on coastal marine ecosystems surrounding North America (and the U.S. in particular), we detail forecast methods, physical and biological mechanisms, and priority developments that are globally relevant.
    Description: This study was supported by the NOAA Climate Program Office’s Modeling, Analysis, Predictions, and Projections (MAPP) program through grants NA17OAR4310108, NA17OAR4310112, NA17OAR4310111, NA17OAR4310110, NA17OAR4310109, NA17OAR4310104, NA17OAR4310106, and NA17OAR4310113. This paper is a product of the NOAA/MAPP Marine Prediction Task Force.
    Keywords: Prediction ; Predictability ; Forecast ; Ecological forecast ; Mechanism ; Seasonal ; Interannual ; Large marine ecosystem
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-27
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Loranger, S., Pedersen, G., & Blomberg, A. E. A. A model for the fate of carbon dioxide from a simulated carbon storage seep. International Journal of Greenhouse Gas Control, 107, (2021): 103293, https://doi.org/10.1016/j.ijggc.2021.103293.
    Description: Offshore geological carbon storage (GCS) is a rapidly developing technology essential for meeting international climate goals. While the likelihood of leakage from a properly planned geological sequestration site is low, assurance that CO stays contained will require robust monitoring programs. While seismic imaging methods are used to monitor the geological reservoir, the ideal method for monitoring the water column above the reservoir depends on the fate and transport of CO. Whether CO is likely to be present as a rising seep of bubbles or dissolved in the water column near the seafloor will determine the appropriate monitoring technology and lead to a better understanding of the environmental impact of a potential leak. In this study, high definition video of a laboratory release of a carbon dioxide bubble seep recorded the size distribution of bubbles as a function of flow rate and orifice diameter. The transport of CO from different bubble size distributions was then modeled using the Texas A&M Oil Spill Calculator modeling suite. Model results show that the most important factor determining the rise height and transport of CO from the simulated leak was the maximum initial bubble size. For a maximum bubble radius of 5 mm, 95% of CO in the simulated seep reached a height of 17.1 m above the seafloor. When the maximum bubble radius was limited to 3 mm, 95% of CO dissolved by 7.8 m above the seafloor. The modeled results were verified during a controlled release of CO in Oslo Fjord.
    Description: This work was carried out as part of the ACT4storage project (617334) funded by Gassnova and Norwegian industry partners through the CLIMIT programme.
    Keywords: CO2, seep ; Carbon capture and storage ; Leak detection ; Numerical simulation
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-09-01
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Yang, X., Zhu, Z., Qiu, S., Kroeger, K. D., Zhu, Z., & Covington, S. Detection and characterization of coastal tidal wetland change in the northeastern US using Landsat time series. Remote Sensing of Environment, 276, (2022): 113047, https://doi.org/10.1016/j.rse.2022.113047.
    Description: Coastal tidal wetlands are highly altered ecosystems exposed to substantial risk due to widespread and frequent land-use change coupled with sea-level rise, leading to disrupted hydrologic and ecologic functions and ultimately, significant reduction in climate resiliency. Knowing where and when the changes have occurred, and the nature of those changes, is important for coastal communities and natural resource management. Large-scale mapping of coastal tidal wetland changes is extremely difficult due to their inherent dynamic nature. To bridge this gap, we developed an automated algorithm for DEtection and Characterization of cOastal tiDal wEtlands change (DECODE) using dense Landsat time series. DECODE consists of three elements, including spectral break detection, land cover classification and change characterization. DECODE assembles all available Landsat observations and introduces a water level regressor for each pixel to flag the spectral breaks and estimate harmonic time-series models for the divided temporal segments. Each temporal segment is classified (e.g., vegetated wetlands, open water, and others – including unvegetated areas and uplands) based on the phenological characteristics and the synthetic surface reflectance values calculated from the harmonic model coefficients, as well as a generic rule-based classification system. This harmonic model-based approach has the advantage of not needing the acquisition of satellite images at optimal conditions (i.e., low tide status) to avoid underestimating coastal vegetation caused by the tidal fluctuation. At the same time, DECODE can also characterize different kinds of changes including land cover change and condition change (i.e., land cover modification without conversion). We used DECODE to track status of coastal tidal wetlands in the northeastern United States from 1986 to 2020. The overall accuracy of land cover classification and change detection is approximately 95.8% and 99.8%, respectively. The vegetated wetlands and open water were mapped with user's accuracy of 94.6% and 99.0%, and producer's accuracy of 98.1% and 93.5%, respectively. The cover change and condition change were mapped with user's accuracy of 68.0% and 80.0%, and producer's accuracy of 80.5% and 97.1%, respectively. Approximately 3283 km2 of the coastal landscape within our study area in the northeastern United States changed at least once (12% of the study area), and condition changes were the dominant change type (84.3%). Vegetated coastal tidal wetland decreased consistently (~2.6 km2 per year) in the past 35 years, largely due to conversion to open water in the context of sea-level rise.
    Description: This study was supported by USGS North Atlantic Coast Cooperative Ecosystem Studies Unit (CESU) Program for Detection and Characterization of Coastal Tidal Wetland Change (G19AC00354).
    Keywords: Coastal tidal wetland ; Landsat time series ; Change detection ; Classification ; Condition change ; Cover change ; Tide ; DECODE
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-26
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Pirotta, E., Thomas, L., Costa, D., Hall, A., Harris, C., Harwood, J., Kraus, S., Miller, P., Moore, M., Photopoulou, T., Rolland, R., Schwacke, L., Simmons, S., Southall, B., & Tyack, P. Understanding the combined effects of multiple stressors: a new perspective on a longstanding challenge. Science of The Total Environment, 821, (2022): 153322, https://doi.org/10.1016/j.scitotenv.2022.153322.
    Description: Wildlife populations and their habitats are exposed to an expanding diversity and intensity of stressors caused by human activities, within the broader context of natural processes and increasing pressure from climate change. Estimating how these multiple stressors affect individuals, populations, and ecosystems is thus of growing importance. However, their combined effects often cannot be predicted reliably from the individual effects of each stressor, and we lack the mechanistic understanding and analytical tools to predict their joint outcomes. We review the science of multiple stressors and present a conceptual framework that captures and reconciles the variety of existing approaches for assessing combined effects. Specifically, we show that all approaches lie along a spectrum, reflecting increasing assumptions about the mechanisms that regulate the action of single stressors and their combined effects. An emphasis on mechanisms improves analytical precision and predictive power but could introduce bias if the underlying assumptions are incorrect. A purely empirical approach has less risk of bias but requires adequate data on the effects of the full range of anticipated combinations of stressor types and magnitudes. We illustrate how this spectrum can be formalised into specific analytical methods, using an example of North Atlantic right whales feeding on limited prey resources while simultaneously being affected by entanglement in fishing gear. In practice, case-specific management needs and data availability will guide the exploration of the stressor combinations of interest and the selection of a suitable trade-off between precision and bias. We argue that the primary goal for adaptive management should be to identify the most practical and effective ways to remove or reduce specific combinations of stressors, bringing the risk of adverse impacts on populations and ecosystems below acceptable thresholds.
    Description: This work was supported by the Office of Naval Research [grant numbers N000142012697, N000142112096]; and the Strategic Environmental Research and Development Program [grant numbers RC20-1097, RC20-7188, RC21-3091].
    Keywords: Adaptive management ; Climate change ; Combined effects ; Mechanistic modelling ; Multiple stressors ; Population consequences
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-27
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Chu, H., Luo, X., Ouyang, Z., Chan, W. S., Dengel, S., Biraud, S. C., Torn, M. S., Metzger, S., Kumar, J., Arain, M. A., Arkebauer, T. J., Baldocchi, D., Bernacchi, C., Billesbach, D., Black, T. A., Blanken, P. D., Bohrer, G., Bracho, R., Brown, S., Brunsell, N. A., Chen, J., Chen, X., Clark, K., Desai, A. R., Duman, T., Durden, D., Fares, S., Forbrich, I., Gamon, J. A., Gough, C. M., Griffis, T., Helbig, M., Hollinger, D., Humphreys, E., Ikawa, H., Iwata, H., Ju, Y., Knowles, J. F., Knox, S. H., Kobayashi, H., Kolb, T., Law, B., Lee, X., Litvak, M., Liu, H., Munger, J. W., Noormets, A., Novick, K., Oberbauer, S. F., Oechel, W., Oikawa, P., Papuga, S. A., Pendall, E., Prajapati, P., Prueger, J., Quinton, W. L., Richardson, A. D., Russell, E. S., Scott, R. L., Starr, G., Staebler, R., Stoy, P. C., Stuart-Haentjens, E., Sonnentag, O., Sullivan, R. C., Suyker, A., Ueyama, M., Vargas, R., Wood, J. D., & Zona, D. Representativeness of eddy-covariance flux footprints for areas surrounding AmeriFlux sites. Agricultural and Forest Meteorology, 301, (2021): 108350, https://doi.org/10.1016/j.agrformet.2021.108350.
    Description: Large datasets of greenhouse gas and energy surface-atmosphere fluxes measured with the eddy-covariance technique (e.g., FLUXNET2015, AmeriFlux BASE) are widely used to benchmark models and remote-sensing products. This study addresses one of the major challenges facing model-data integration: To what spatial extent do flux measurements taken at individual eddy-covariance sites reflect model- or satellite-based grid cells? We evaluate flux footprints—the temporally dynamic source areas that contribute to measured fluxes—and the representativeness of these footprints for target areas (e.g., within 250–3000 m radii around flux towers) that are often used in flux-data synthesis and modeling studies. We examine the land-cover composition and vegetation characteristics, represented here by the Enhanced Vegetation Index (EVI), in the flux footprints and target areas across 214 AmeriFlux sites, and evaluate potential biases as a consequence of the footprint-to-target-area mismatch. Monthly 80% footprint climatologies vary across sites and through time ranging four orders of magnitude from 103 to 107 m2 due to the measurement heights, underlying vegetation- and ground-surface characteristics, wind directions, and turbulent state of the atmosphere. Few eddy-covariance sites are located in a truly homogeneous landscape. Thus, the common model-data integration approaches that use a fixed-extent target area across sites introduce biases on the order of 4%–20% for EVI and 6%–20% for the dominant land cover percentage. These biases are site-specific functions of measurement heights, target area extents, and land-surface characteristics. We advocate that flux datasets need to be used with footprint awareness, especially in research and applications that benchmark against models and data products with explicit spatial information. We propose a simple representativeness index based on our evaluations that can be used as a guide to identify site-periods suitable for specific applications and to provide general guidance for data use.
    Description: We thank the AmeriFlux site teams for sharing their data and metadata with the network. Funding for these flux sites is acknowledged in the site data DOI, shown in Table S1. This analysis was supported in part by funding provided to the AmeriFlux Management Project by the U.S. Department of Energy's Office of Science under Contract No. DE-AC02-05CH11231. All footprint climatologies, site-level representativeness indices, and monthly EVI and sensor location biases can be accessed via the Zenodo Data Repository (Datasets S1–S6, http://doi.org/10.5281/zenodo.4015350).
    Keywords: Flux footprint ; Spatial representativeness ; Landsat EVI ; Land cover ; Sensor location bias ; Model-data benchmarking
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Babbin, A. R., Buchwald, C., Morel, F. M. M., Wankel, S. D., & Ward, B. B. Nitrite oxidation exceeds reduction and fixed nitrogen loss in anoxic Pacific waters. Marine Chemistry, 224, (2020): 103814, doi:10.1016/j.marchem.2020.103814.
    Description: The diversity of nitrogen-based dissimilatory metabolisms in anoxic waters continues to increase with additional studies to the marine oxygen deficient zones (ODZs). Although the microbial oxidation of nitrite (NO2–) has been known for over a century, studies of the pathways and microbes involved have generally proceeded under the assumption that nitrite oxidation to nitrate requires dioxygen (O2). Anaerobic NO2– oxidation until now has been conclusively shown only for anammox bacteria, albeit only as a limited sink for NO2– in their metabolism compared to the NO2– reduced to N2. Here, using direct experimental techniques optimized for replicating in situ anoxic conditions, we show that NO2– oxidation is substantial, widespread, and consistent across the ODZs of the eastern tropical Pacific Ocean. Regardless of the specific oxidant, NO2– oxidation rates are up to an order of magnitude larger than simultaneous N2 production rates for which these zones are known, and cannot be explained by anammox rates alone. Higher rates of NO2– oxidation over reduction in anoxic waters are paradoxical but help to explain how anammox rates can be enhanced over denitrification in shallow anoxic waters (σθ 〈 26.4) at the edge of the ODZs but not within the ODZ core. Furthermore, nitrite oxidation may be the key to reconciliation of the perceived imbalance of the global fixed nitrogen loss budget.
    Description: This work was funded by National Science Foundation grants OCE–1029951 to B.B.W, BIO–1402109 to A.R.B., and OCE-1260373 to S.D.W. Additional financial support to A.R.B. was provided by Simons Foundation grant 622065 and the generous contributions of Dr. Bruce L. Heflinger.
    Keywords: Nitrogen cycling ; Oxygen deficient zones ; Nitrite oxidation ; Denitrification ; Anammox
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 1950-01-01
    Print ISSN: 0371-1951
    Electronic ISSN: 1873-3816
    Topics: Chemistry and Pharmacology , Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 1950-01-01
    Print ISSN: 0371-1951
    Electronic ISSN: 1873-3816
    Topics: Chemistry and Pharmacology , Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 1950-01-01
    Print ISSN: 0371-1951
    Electronic ISSN: 1873-3816
    Topics: Chemistry and Pharmacology , Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 1950-01-01
    Print ISSN: 0371-1951
    Electronic ISSN: 1873-3816
    Topics: Chemistry and Pharmacology , Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...