ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2020-2023  (15)
  • 1940-1944  (3)
Collection
Keywords
Language
Years
Year
  • 1
    Publication Date: 2022-04-04
    Description: Microbial organic matter decomposition is a critical ecosystem function, which can be negatively affected by chemicals. Although the majority of organic matter is stored in sediments, the impact of chemicals has exclusively been studied in benthic systems. To address this knowledge gap, we assessed the impact of a fungicide mixture at three concentrations on the decomposition of black alder leaves in the benthic and hyporheic zone. We targeted two sediment treatments characterized by fine and coarse grain sizes (1–2 vs. 2–4 mm). Besides microbial communities' functioning (i.e., decomposition), we determined their structure through microbial biomass estimates and community composition. In absence of fungicides, leaf decomposition, microbial biomass estimates and fungal sporulation were lower in the hyporheic zone, while the importance of bacteria was elevated. Leaf decomposition was reduced (40%) under fungicide exposure in fine sediment with an effect size more than twice as high as in the benthic zone (15%). These differences are likely triggered by the lower hydraulic conductivity in the hyporheic zone influencing microbial dispersal as well as oxygen and nutrient fluxes. Since insights from the benthic zone are not easily transferable, these results indicate that the hyporheic zone requires a higher recognition with regard to ecotoxicological effects on organic matter decomposition.
    Description: German Research Foundation, Project AQUA‐REG http://dx.doi.org/10.13039/501100001659
    Keywords: ddc:550.724 ; ddc:579
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Journal of comparative physiology 29 (1942), S. 146-171 
    ISSN: 1432-1351
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Zusammenfassung Die Schnappreaktion der Ellritze wird als Instinkthandlung aufgefaßt. Die Intensität der Reaktion ist abhängig von der reaktionsspezifischen Erregung und von der Valenz der auslösenden Reizsituation. Vom Objekt der Schnappreaktion hat die Ellritze kein angeborenes Schema. Ich kann daher durch eine Dressur die auslösende Wirkung von einem bekannten Reiz auf ein von mir gewähltes Signal übertragen. Der allgemeine Erregungszustand ist von der Vielfalt aller inneren und äußeren Umstände abhängig. Von großer Bedeutung dafür sind optische Eindrücke. Wetterfaktoren (Frontendurchgang, Föhn, Gewitter) spielen dabei keine Rolle. Sie haben bei der Dressur weder auf die Reaktionssicherheit noch auf die Reaktionsweise Einfluß.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1940-01-01
    Print ISSN: 0006-3444
    Electronic ISSN: 1464-3510
    Topics: Biology , Mathematics , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1940-03-01
    Print ISSN: 0006-3444
    Electronic ISSN: 1464-3510
    Topics: Biology , Mathematics , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-03-21
    Description: Many global health risks are related to what and how much we eat. At the same time, the production of food, especially from animal origin, contributes to environmental change at a scale that threatens boundaries of a safe operating space for humanity. Here we outline viable solutions how to reconcile healthy protein consumption and sustainable protein production which requires a solid, interdisciplinary evidence base. We review the role of proteins for human and ecosystem health, including physiological effects of dietary proteins, production potentials from agricultural and aquaculture systems, environmental impacts of protein production, and mitigation potentials of transforming current production systems. Various protein sources from plant and animal origin, including insects and fish, are discussed in the light of their health and environmental implications. Integration of available knowledge is essential to move from a dual problem description (“healthy diets versus environment”) towards approaches that frame the food challenge of reconciling human and ecosystem health in the context of planetary health. This endeavor requires a shifting focus from metrics at the level of macronutrients to whole diets and a better understanding of the full cascade of health effects caused by dietary proteins, including health risks from food-related environmental degradation.
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-07-22
    Description: Abstract
    Description: This dataset provides Rapid Science Orbits (RSO) from the Low Earth Orbiter (LEO) satellite GRACE-FO-1. It is part of the compilation of GFZ RSO products for various LEO missions and the appropriate GNSS constellation in sp3 format. The individual solutions for each satellite mission are published with individual DOI as part of the compilation (Schreiner et al., 2022). •The GRACE-FO RSO cover the period: - from 2019 049 to up-to-date The LEO RSOs in version 2 are generated based on the 30-hour GPS RSOs in two pieces for the actual day with arc lengths of 14 hours and overlaps of 2 hours. One starting at 22:00 and ending at 12:00, one starting at 10:00 and ending at 24:00. Due to the extended length of the constellation, there is no need to concatenate several constellations for day-overlapping arcs. The accuracy of the LEO RSOs is at the level of 1-2 cm in terms of SLR validation. Each solution in version 2 is given in the Conventional Terrestrial Reference System (CTS) based on the IERS 2010 conventions and related to the ITRF-2014 reference frame. The exact time covered by an arc is defined in the header of the files and indicated as well as in the filename.
    Description: Other
    Description: Orbital products describe positions and velocities of satellites, be it the Global Navigation Satellite System (GNSS) satellites or Low Earth Orbiter (LEO) satellites. These orbital products can be divided into the fastest available ones, the Near Realtime Orbits (NRT), which are mostly available within 15 to 60 minutes delay, followed by Rapid Science Orbit (RSO) products with a latency of two days and finally the Precise Science Orbit (PSO) which, with a latency of up to a few weeks, are the most delayed. The absolute positional accuracy increases with the time delay.
    Keywords: Level-3 ; Satellite Geodesy ; Low Earth Orbiter ; Orbit ; GRACE-FO ; GPS ; RSO ; Tracking ; Occultation ; Satellite Laser Ranging ; SLR ; Earth Observation Satellites 〉 NASA Decadal Survey 〉 GRACE II ; Earth Observation Satellites 〉 SATELLITES ; Earth Remote Sensing Instruments 〉 Passive Remote Sensing 〉 Photon/Optical Detectors 〉 Cameras 〉 GRACE SCA ; Earth Remote Sensing Instruments 〉 Passive Remote Sensing 〉 Positioning/Navigation 〉 AIRCRAFT MOTION SENSOR ; Earth Remote Sensing Instruments 〉 Passive Remote Sensing 〉 Positioning/Navigation 〉 GNSS ; Earth Remote Sensing Instruments 〉 Passive Remote Sensing 〉 Positioning/Navigation 〉 GPS 〉 GNSS RECEIVER ; Earth Remote Sensing Instruments 〉 Passive Remote Sensing 〉 Positioning/Navigation 〉 GPS 〉 GNSS-RO RECEIVER ; Earth Remote Sensing Instruments 〉 Passive Remote Sensing 〉 Positioning/Navigation 〉 GPS 〉 GPS ; Earth Remote Sensing Instruments 〉 Passive Remote Sensing 〉 Positioning/Navigation 〉 GPS 〉 GPS CLOCKS ; Earth Remote Sensing Instruments 〉 Passive Remote Sensing 〉 Positioning/Navigation 〉 GPS 〉 GPS RECEIVERS ; Earth Remote Sensing Instruments 〉 Passive Remote Sensing 〉 Positioning/Navigation 〉 GPS 〉 RO ; Earth Remote Sensing Instruments 〉 Passive Remote Sensing 〉 Positioning/Navigation 〉 GYROS ; Earth Remote Sensing Instruments 〉 Passive Remote Sensing 〉 Positioning/Navigation 〉 Laser Ranging ; Earth Remote Sensing Instruments 〉 Passive Remote Sensing 〉 Positioning/Navigation 〉 Laser Ranging 〉 GRACE LRR ; Earth Remote Sensing Instruments 〉 Passive Remote Sensing 〉 Positioning/Navigation 〉 Laser Ranging 〉 LASER REFLECTOR ; Earth Remote Sensing Instruments 〉 Passive Remote Sensing 〉 Positioning/Navigation 〉 Laser Ranging 〉 LASER TRACKING REFLECTOR ; Earth Remote Sensing Instruments 〉 Passive Remote Sensing 〉 Positioning/Navigation 〉 Laser Ranging 〉 SLR ; Earth Remote Sensing Instruments 〉 Passive Remote Sensing 〉 Positioning/Navigation 〉 Radio 〉 HAIRS ; Earth Remote Sensing Instruments 〉 Passive Remote Sensing 〉 Positioning/Navigation 〉 Radio 〉 INS ; Earth Remote Sensing Instruments 〉 Passive Remote Sensing 〉 Positioning/Navigation 〉 Radio 〉 USO ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEODETICS
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-07-22
    Description: Abstract
    Description: This dataset provides Rapid Science Orbits (RSO) from the Low Earth Orbiter (LEO) satellite GRACE-FO-2. It is part of the compilation of GFZ RSO products for various LEO missions and the appropriate GNSS constellation in sp3 format. The individual solutions for each satellite mission are published with individual DOI as part of the compilation (Schreiner et al., 2022). •The GRACE-FO RSO cover the period: - from 2019 049 to up-to-date The LEO RSOs in version 2 are generated based on the 30-hour GPS RSOs in two pieces for the actual day with arc lengths of 14 hours and overlaps of 2 hours. One starting at 22:00 and ending at 12:00, one starting at 10:00 and ending at 24:00. Due to the extended length of the constellation, there is no need to concatenate several constellations for day-overlapping arcs. The accuracy of the LEO RSOs is at the level of 1-2 cm in terms of SLR validation. Each solution in version 2 is given in the Conventional Terrestrial Reference System (CTS) based on the IERS 2010 conventions and related to the ITRF-2014 reference frame. The exact time covered by an arc is defined in the header of the files and indicated as well as in the filename.
    Description: Other
    Description: Orbital products describe positions and velocities of satellites, be it the Global Navigation Satellite System (GNSS) satellites or Low Earth Orbiter (LEO) satellites. These orbital products can be divided into the fastest available ones, the Near Realtime Orbits (NRT), which are mostly available within 15 to 60 minutes delay, followed by Rapid Science Orbit (RSO) products with a latency of two days and finally the Precise Science Orbit (PSO) which, with a latency of up to a few weeks, are the most delayed. The absolute positional accuracy increases with the time delay.
    Keywords: Level-3 ; Satellite Geodesy ; Low Earth Orbiter ; Orbit ; GRACE-FO ; GPS ; RSO ; Tracking ; Occultation ; Satellite Laser Ranging ; SLR ; Earth Observation Satellites 〉 NASA Decadal Survey 〉 GRACE II ; Earth Observation Satellites 〉 SATELLITES ; Earth Remote Sensing Instruments 〉 Passive Remote Sensing 〉 Photon/Optical Detectors 〉 Cameras 〉 GRACE SCA ; Earth Remote Sensing Instruments 〉 Passive Remote Sensing 〉 Positioning/Navigation 〉 AIRCRAFT MOTION SENSOR ; Earth Remote Sensing Instruments 〉 Passive Remote Sensing 〉 Positioning/Navigation 〉 GNSS ; Earth Remote Sensing Instruments 〉 Passive Remote Sensing 〉 Positioning/Navigation 〉 GPS 〉 GNSS RECEIVER ; Earth Remote Sensing Instruments 〉 Passive Remote Sensing 〉 Positioning/Navigation 〉 GPS 〉 GNSS-RO RECEIVER ; Earth Remote Sensing Instruments 〉 Passive Remote Sensing 〉 Positioning/Navigation 〉 GPS 〉 GPS ; Earth Remote Sensing Instruments 〉 Passive Remote Sensing 〉 Positioning/Navigation 〉 GPS 〉 GPS CLOCKS ; Earth Remote Sensing Instruments 〉 Passive Remote Sensing 〉 Positioning/Navigation 〉 GPS 〉 GPS RECEIVERS ; Earth Remote Sensing Instruments 〉 Passive Remote Sensing 〉 Positioning/Navigation 〉 GPS 〉 RO ; Earth Remote Sensing Instruments 〉 Passive Remote Sensing 〉 Positioning/Navigation 〉 GYROS ; Earth Remote Sensing Instruments 〉 Passive Remote Sensing 〉 Positioning/Navigation 〉 Laser Ranging ; Earth Remote Sensing Instruments 〉 Passive Remote Sensing 〉 Positioning/Navigation 〉 Laser Ranging 〉 GRACE LRR ; Earth Remote Sensing Instruments 〉 Passive Remote Sensing 〉 Positioning/Navigation 〉 Laser Ranging 〉 LASER REFLECTOR ; Earth Remote Sensing Instruments 〉 Passive Remote Sensing 〉 Positioning/Navigation 〉 Laser Ranging 〉 LASER TRACKING REFLECTOR ; Earth Remote Sensing Instruments 〉 Passive Remote Sensing 〉 Positioning/Navigation 〉 Laser Ranging 〉 SLR ; Earth Remote Sensing Instruments 〉 Passive Remote Sensing 〉 Positioning/Navigation 〉 Radio 〉 HAIRS ; Earth Remote Sensing Instruments 〉 Passive Remote Sensing 〉 Positioning/Navigation 〉 Radio 〉 INS ; Earth Remote Sensing Instruments 〉 Passive Remote Sensing 〉 Positioning/Navigation 〉 Radio 〉 USO ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEODETICS
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-07-22
    Description: Abstract
    Description: This dataset provides Rapid Science Orbits (RSO) from the Low Earth Orbiter (LEO) satellite TanDEM-X. It is part of the compilation of GFZ RSO products for various LEO missions and the appropriate GNSS constellation in sp3 format. The individual solutions for each satellite mission are published with individual DOI as part of the compilation (Schreiner et al., 2022). •The TanDEM-X RSO cover the period: from 2010 173 to up-to-date The LEO RSOs in version 2 are generated based on the 30-hour GPS RSOs in two pieces for the actual day with arc lengths of 14 hours and overlaps of 2 hours. One starting at 22:00 and ending at 12:00, one starting at 10:00 and ending at 24:00. Due to the extended length of the constellation, there is no need to concatenate several constellations for day-overlapping arcs. The accuracy of the LEO RSOs is at the level of 1-2 cm in terms of SLR validation. Each solution in version 2 is given in the Conventional Terrestrial Reference System (CTS) based on the IERS 2010 conventions and related to the ITRF-2014 reference frame. The exact time covered by an arc is defined in the header of the files and indicated as well as in the filename.
    Description: Other
    Description: Orbital products describe positions and velocities of satellites, be it the Global Navigation Satellite System (GNSS) satellites or Low Earth Orbiter (LEO) satellites. These orbital products can be divided into the fastest available ones, the Near Realtime Orbits (NRT), which are mostly available within 15 to 60 minutes delay, followed by Rapid Science Orbit (RSO) products with a latency of two days and finally the Precise Science Orbit (PSO) which, with a latency of up to a few weeks, are the most delayed. The absolute positional accuracy increases with the time delay.
    Keywords: Level-3 ; Satellite Geodesy ; Low Earth Orbiter ; Orbit ; TOR ; TDX ; GPS ; RSO ; SAR ; IGOR ; Tracking ; Occultation ; Satellite Laser Ranging ; SLR ; Earth Observation Satellites 〉 SATELLITES ; Earth Observation Satellites 〉 TDX ; Earth Remote Sensing Instruments 〉 Passive Remote Sensing 〉 Positioning/Navigation 〉 AIRCRAFT MOTION SENSOR ; Earth Remote Sensing Instruments 〉 Passive Remote Sensing 〉 Positioning/Navigation 〉 GNSS ; Earth Remote Sensing Instruments 〉 Passive Remote Sensing 〉 Positioning/Navigation 〉 GPS 〉 BLACKJACK ; Earth Remote Sensing Instruments 〉 Passive Remote Sensing 〉 Positioning/Navigation 〉 GPS 〉 GNSS RECEIVER ; Earth Remote Sensing Instruments 〉 Passive Remote Sensing 〉 Positioning/Navigation 〉 GPS 〉 GNSS-RO RECEIVER ; Earth Remote Sensing Instruments 〉 Passive Remote Sensing 〉 Positioning/Navigation 〉 GPS 〉 GPS ; Earth Remote Sensing Instruments 〉 Passive Remote Sensing 〉 Positioning/Navigation 〉 GPS 〉 GPS CLOCKS ; Earth Remote Sensing Instruments 〉 Passive Remote Sensing 〉 Positioning/Navigation 〉 GPS 〉 GPS RECEIVERS ; Earth Remote Sensing Instruments 〉 Passive Remote Sensing 〉 Positioning/Navigation 〉 GPS 〉 RO ; Earth Remote Sensing Instruments 〉 Passive Remote Sensing 〉 Positioning/Navigation 〉 GYROS ; Earth Remote Sensing Instruments 〉 Passive Remote Sensing 〉 Positioning/Navigation 〉 Laser Ranging ; Earth Remote Sensing Instruments 〉 Passive Remote Sensing 〉 Positioning/Navigation 〉 Laser Ranging 〉 LASER REFLECTOR ; Earth Remote Sensing Instruments 〉 Passive Remote Sensing 〉 Positioning/Navigation 〉 Laser Ranging 〉 LASER TRACKING REFLECTOR ; Earth Remote Sensing Instruments 〉 Passive Remote Sensing 〉 Positioning/Navigation 〉 Laser Ranging 〉 SLR ; Earth Remote Sensing Instruments 〉 Passive Remote Sensing 〉 Positioning/Navigation 〉 Radio 〉 INS ; Earth Remote Sensing Instruments 〉 Passive Remote Sensing 〉 Positioning/Navigation 〉 Radio 〉 USO ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEODETICS
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-07-22
    Description: Abstract
    Description: This dataset provides Rapid Science Orbits (RSO) from the Low Earth Orbiter (LEO) satellite TanDEM-X. It is part of the compilation of GFZ RSO products for various LEO missions and the appropriate GNSS constellation in sp3 format. The individual solutions for each satellite mission are published with individual DOI as part of the compilation (Schreiner et al., 2022). •The TanDEM-X RSO cover the period: ofrom 2010 173 to up-to-date The LEO RSOs in version 1 are generated based on the 24-hour GPS RSOs in two pieces for the actual day with arc lengths of 14 hours and overlaps of 2 hours. One starting at 22:00 and ending at 12:00, one starting at 10:00 and ending at 24:00. For day overlapping arcs two 24h GNSS constellations are concatenated. The accuracy of the LEO RSOs is at the level of 1-2 cm in terms of SLR validation. Each solution in version 1 is given in the Conventional Terrestrial Reference System (CTS) based on the IERS 2003 conventions and related to the ITRF-2008 reference frame. The exact time covered by an arc is defined in the header of the files and indicated as well as in the filename.
    Description: Other
    Description: Orbital products describe positions and velocities of satellites, be it the Global Navigation Satellite System (GNSS) satellites or Low Earth Orbiter (LEO) satellites. These orbital products can be divided into the fastest available ones, the Near Realtime Orbits (NRT), which are mostly available within 15 to 60 minutes delay, followed by Rapid Science Orbit (RSO) products with a latency of two days and finally the Precise Science Orbit (PSO) which, with a latency of up to a few weeks, are the most delayed. The absolute positional accuracy increases with the time delay.
    Keywords: Level-3 ; Satellite Geodesy ; Low Earth Orbiter ; Orbit ; TOR ; TDX ; GPS ; RSO ; SAR ; IGOR ; Tracking ; Occultation ; Satellite Laser Ranging ; SLR ; Earth Observation Satellites 〉 SATELLITES ; Earth Observation Satellites 〉 TDX ; Earth Remote Sensing Instruments 〉 Passive Remote Sensing 〉 Positioning/Navigation 〉 AIRCRAFT MOTION SENSOR ; Earth Remote Sensing Instruments 〉 Passive Remote Sensing 〉 Positioning/Navigation 〉 GNSS ; Earth Remote Sensing Instruments 〉 Passive Remote Sensing 〉 Positioning/Navigation 〉 GPS 〉 BLACKJACK ; Earth Remote Sensing Instruments 〉 Passive Remote Sensing 〉 Positioning/Navigation 〉 GPS 〉 GNSS RECEIVER ; Earth Remote Sensing Instruments 〉 Passive Remote Sensing 〉 Positioning/Navigation 〉 GPS 〉 GNSS-RO RECEIVER ; Earth Remote Sensing Instruments 〉 Passive Remote Sensing 〉 Positioning/Navigation 〉 GPS 〉 GPS ; Earth Remote Sensing Instruments 〉 Passive Remote Sensing 〉 Positioning/Navigation 〉 GPS 〉 GPS CLOCKS ; Earth Remote Sensing Instruments 〉 Passive Remote Sensing 〉 Positioning/Navigation 〉 GPS 〉 GPS RECEIVERS ; Earth Remote Sensing Instruments 〉 Passive Remote Sensing 〉 Positioning/Navigation 〉 GPS 〉 RO ; Earth Remote Sensing Instruments 〉 Passive Remote Sensing 〉 Positioning/Navigation 〉 GYROS ; Earth Remote Sensing Instruments 〉 Passive Remote Sensing 〉 Positioning/Navigation 〉 Laser Ranging ; Earth Remote Sensing Instruments 〉 Passive Remote Sensing 〉 Positioning/Navigation 〉 Laser Ranging 〉 LASER REFLECTOR ; Earth Remote Sensing Instruments 〉 Passive Remote Sensing 〉 Positioning/Navigation 〉 Laser Ranging 〉 LASER TRACKING REFLECTOR ; Earth Remote Sensing Instruments 〉 Passive Remote Sensing 〉 Positioning/Navigation 〉 Laser Ranging 〉 SLR ; Earth Remote Sensing Instruments 〉 Passive Remote Sensing 〉 Positioning/Navigation 〉 Radio 〉 INS ; Earth Remote Sensing Instruments 〉 Passive Remote Sensing 〉 Positioning/Navigation 〉 Radio 〉 USO ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEODETICS
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-07-22
    Description: Abstract
    Description: This dataset provides Rapid Science Orbits (RSO) from the Low Earth Orbiter (LEO) satellite TerraSAR-X. It is part of the compilation of GFZ RSO products for various LEO missions and the appropriate GNSS constellation in sp3 format. The individual solutions for each satellite mission are published with individual DOI as part of the compilation (Schreiner et al., 2022). •The TerraSAR-X RSO cover the period - from 2007 264 to up-to-date The LEO RSOs in version 1 are generated based on the 24-hour GPS RSOs in two pieces for the actual day with arc lengths of 14 hours and overlaps of 2 hours. One starting at 22:00 and ending at 12:00, one starting at 10:00 and ending at 24:00. For day overlapping arcs two 24h GNSS constellations are concatenated. The accuracy of the LEO RSOs is at the level of 1-2 cm in terms of SLR validation. Each solution in version 1 is given in the Conventional Terrestrial Reference System (CTS) based on the IERS 2003 conventions and related to the ITRF-2008 reference frame. The exact time covered by an arc is defined in the header of the files and indicated as well as in the filename.
    Description: Other
    Description: Orbital products describe positions and velocities of satellites, be it the Global Navigation Satellite System (GNSS) satellites or Low Earth Orbiter (LEO) satellites. These orbital products can be divided into the fastest available ones, the Near Realtime Orbits (NRT), which are mostly available within 15 to 60 minutes delay, followed by Rapid Science Orbit (RSO) products with a latency of two days and finally the Precise Science Orbit (PSO) which, with a latency of up to a few weeks, are the most delayed. The absolute positional accuracy increases with the time delay.
    Keywords: Level-3 ; Satellite Geodesy ; Low Earth Orbiter ; Orbit ; TOR ; TSX ; GPS ; RSO ; SAR ; IGOR ; Tracking ; Occultation ; Satellite Laser Ranging ; SLR ; Earth Observation Satellites 〉 SATELLITES ; Earth Observation Satellites 〉 TSX ; Earth Remote Sensing Instruments 〉 Passive Remote Sensing 〉 Positioning/Navigation 〉 AIRCRAFT MOTION SENSOR ; Earth Remote Sensing Instruments 〉 Passive Remote Sensing 〉 Positioning/Navigation 〉 GNSS ; Earth Remote Sensing Instruments 〉 Passive Remote Sensing 〉 Positioning/Navigation 〉 GPS 〉 BLACKJACK ; Earth Remote Sensing Instruments 〉 Passive Remote Sensing 〉 Positioning/Navigation 〉 GPS 〉 GNSS RECEIVER ; Earth Remote Sensing Instruments 〉 Passive Remote Sensing 〉 Positioning/Navigation 〉 GPS 〉 GNSS-RO RECEIVER ; Earth Remote Sensing Instruments 〉 Passive Remote Sensing 〉 Positioning/Navigation 〉 GPS 〉 GPS ; Earth Remote Sensing Instruments 〉 Passive Remote Sensing 〉 Positioning/Navigation 〉 GPS 〉 GPS CLOCKS ; Earth Remote Sensing Instruments 〉 Passive Remote Sensing 〉 Positioning/Navigation 〉 GPS 〉 GPS RECEIVERS ; Earth Remote Sensing Instruments 〉 Passive Remote Sensing 〉 Positioning/Navigation 〉 GPS 〉 RO ; Earth Remote Sensing Instruments 〉 Passive Remote Sensing 〉 Positioning/Navigation 〉 GYROS ; Earth Remote Sensing Instruments 〉 Passive Remote Sensing 〉 Positioning/Navigation 〉 Laser Ranging ; Earth Remote Sensing Instruments 〉 Passive Remote Sensing 〉 Positioning/Navigation 〉 Laser Ranging 〉 LASER REFLECTOR ; Earth Remote Sensing Instruments 〉 Passive Remote Sensing 〉 Positioning/Navigation 〉 Laser Ranging 〉 LASER TRACKING REFLECTOR ; Earth Remote Sensing Instruments 〉 Passive Remote Sensing 〉 Positioning/Navigation 〉 Laser Ranging 〉 SLR ; Earth Remote Sensing Instruments 〉 Passive Remote Sensing 〉 Positioning/Navigation 〉 Radio 〉 INS ; Earth Remote Sensing Instruments 〉 Passive Remote Sensing 〉 Positioning/Navigation 〉 Radio 〉 USO ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEODETICS
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...