ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2020-2022  (1)
Collection
Years
Year
  • 1
    Publication Date: 2021-10-16
    Description: Additive manufacturing of casting cores and molds is state of the art in industrial application today. However, improving the properties of chemically bonded casting cores regarding temperature stability, bending strength, and surface quality is still a major challenge. The process of slurry-based 3D printing allows the fabrication of dense structures and therefore sinterable casting cores. This paper presents a study of the slurry-based fabrication of ceramic layer compounds focusing on the drying process and the achievable properties in slurry-based 3D printing of casting cores. This study aims at contributing to a better understanding of the interrelations between the drying conditions in the 3D printing process and the properties of sintered specimens relating thereto. The drying intensity influenced by an IR heater as well as the drying periods are varied for layer thicknesses of 50, 75, and 100 µm. Within this study, a process window applicable for 3D printing of sinterable casting cores is identified and further indications are given for optimization potentials. At layer heights of 75 µm, bending strengths between ~8 and 11 MPa as well as densities of around 50% of the theoretical density were achieved. Since the mean roughness depth Rz is determined to be
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...