ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2020-2022  (2)
  • 1
    Publication Date: 2020-11-12
    Description: Bottlenose dolphins (Tursiops truncatus) have a worldwide distribution in temperate and tropical waters and often inhabit estuarine environments, indicating their ability to maintain homeostasis in low salinity for limited periods of time. Epidermal and biochemical changes associated with low salinity exposure have been documented in stranded bottlenose dolphins; however, these animals are often found severely debilitated or deceased and in poor condition. Dolphins in the U.S. Navy Marine Mammal Program travel globally, navigating varied environments comparable to those in which free-ranging dolphins are observed. A retrospective analysis was performed of medical records from 46 Navy dolphins and blood samples from 43 Navy dolphins exposed to a variety of salinity levels for different durations over 43 years (from 1967–2010). Blood values from samples collected during low salinity environmental exposure (salinity ranging from 0–30 parts per thousand (ppt) were compared to samples collected while those same animals were in a seawater environment (31–35 ppt). Epidermal changes associated with low salinity exposure were also assessed. Significant decreases in serum sodium, chloride, and calculated serum osmolality and significant increases in blood urea nitrogen and aldosterone were observed in blood samples collected during low salinity exposure. Epidermal changes were observed in 35% of the animals that spent time in low salinity waters. The prevalence of epidermal changes was inversely proportional to the level of salinity to which the animals were exposed. Future work is necessary to fully comprehend the impacts of low salinity exposure in bottlenose dolphins, but the physiological changes observed in this study will help improve our understanding of the upper limit of duration and the lower limit of salinity in which a bottlenose dolphin can maintain homeostasis.
    Electronic ISSN: 2673-5636
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-04-29
    Description: Animal sounds are commonly used by humans to infer information about their motivations and their health, yet, acoustic data is an underutilized welfare biomarker especially for aquatic animals. Here, we describe an acoustic monitoring system that is being implemented at the U.S. Navy Marine Mammal Program where dolphins live in groups in ocean enclosures in San Diego Bay. A four-element bottom mounted hydrophone array is used to continuously record, detect and localize acoustic detections from this focal group. Software provides users an automated comparison of the current acoustic behavior to group historical data which can be used to identify periods of normal, healthy thriving dolphins, and allows rare instances of deviations from typical behavior to stand out. Variations in a group or individual’s call rates can be correlated with independent veterinary examinations and behavioral observations in order to better assess dolphin health and welfare. Additionally, the monitoring system identifies time periods in which a sound source from San Diego Bay is of high-enough amplitude that the received level at our array is considered a potential concern for the focal animals. These time stamps can be used to identify and potentially mitigate exposures to acoustic sources that may otherwise not be obvious to human listeners. We hope this application inspires zoos and aquaria to innovate and create ways to incorporate acoustic information into their own animal welfare management programs.
    Electronic ISSN: 2673-5636
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...