ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2020-2022  (5)
Collection
Years
Year
  • 1
  • 2
    facet.materialart.
    Unknown
    JOHN WILEY & SONS LTD
    In:  EPIC3Permafrost and Periglacial Processes, JOHN WILEY & SONS LTD, 31(3), pp. 442-453, ISSN: 1045-6740
    Publication Date: 2020-08-16
    Description: Submarine permafrost is perennially cryotic earth material that lies offshore. Most submarine permafrost is relict terrestrial permafrost beneath the Arctic shelf seas, was inundated after the last glaciation, and has been warming and thawing ever since. As a reservoir and confining layer for gas hydrates, it has the potential to release greenhouse gasses and impact coastal infrastructure, but its distribution and rate of thaw are poorly constrained by observational data. Lengthening summers, reduced sea ice extent and increased solar heating will increase water temperatures and thaw rates. Observations of gas release from the East Siberian shelf and high methane concentrations in the water column and air above it have been attributed to flowpaths created in thawing permafrost. In this context, it is important to understand the distribution and state of submarine permafrost and how they are changing. We assemble recent and historical drilling data on regional submarine permafrost degradation rates and review recent studies that use modelling, geophysical mapping and geomorphology to characterize submarine permafrost. Implications for submarine permafrost thawing are discussed within the context of methane cycling in the Arctic Ocean and global climate change.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev , info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-08-30
    Description: The cover image is based on the Original Article* Recent Advances in the Study of Arctic Submarine Permafrost by Michael Angelopoulos** et al., https://doi.org/10.1002/ppp.2061.*** Source Credit: GRID‐Arendal; Overduin, et al. (2019); Obu, et al. (2019). This map was produced as part of the Nunataryuk project, which has received funding under the European Union’s Horizon 2020 Research and Innovation Programme under grant agreement no. 773421.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Miscellaneous , notRev , info:eu-repo/semantics/other
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-12-23
    Description: Arctic rivers deliver ≈11% of global river discharge into the Arctic Ocean, while this ocean represents only ≈1% of the global ocean volume. Ongoing climate warming across the Arctic, and specifically Siberia, has led to regional-scale changes in precipitation patterns, greater rates of permafrost thaw and active layer deepening, as well as enhanced riverbank and coastal erosion. Combined, these climatic and cryospheric perturbations have already resulted in increased freshwater discharge and changes to constituent loads (e.g. dissolved organic carbon - OC) supplied from land to the Arctic Ocean. To date, the majority of studies examining terrestrial organic matter (OM) delivery to the Arctic Ocean have focused almost entirely on freshwater (riverine) or fully-marine environments and been conducted during late summer seasons – often due to logistical constraints. Despite this, an improved understanding of how OC is transformed, mineralised and released during transit through the highly reactive nearshore estuarine environment is critical for examining the fate and influence of terrestrial OM on the Arctic Ocean. Capturing seasonality over the open water period is also necessary to identify current OM fluxes to the ocean vs the atmosphere, and aid in constraining how future changes may modify them. Here we focus upon carbon dioxide (CO2) and methane (CH4) measurements collected during six repeated transects of the Kolyma River and nearshore zone (covering ~120 km) from 2019. Transects spanned almost the entirety of the riverine open water season (June to September). We use these results, in parallel with gas concentrations derived from prior studies, to develop and validate a simple box-model of gas emissions from the nearshore zone. Observations and model‐derived output data reveal that more than 50% of the cumulative gross delivery of CH4 and CO2 to the coastal ocean occurred during the freshet period with dissolved CH4 concentrations in surface water reaching 660 Nanomole per liter [nmol/l]. These results demonstrate the relevance of seasonal dynamics and its spatial variability which are needed in order to estimate greenhouse gas fluxes on an annual basis. More accurate understanding of land-ocean carbon fluxes in the Arctic is therefore crucial to mitigate the effects of climate change and to support the decisions of policy makers.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    In:  EPIC3EGU General Assembly 2021, online, 2021-04-19-2021-04-30Passive seismic investigations of subaquatic permafrost
    Publication Date: 2021-12-05
    Description: Large quantities of organic carbon are known to be sequestered within subaquatic permafrost as gas hydrates. Therefore, knowledge of the extent and thaw rate is of critical importance to our understanding of global climate change. Investigations of sub-aquatic permafrost have focussed on its physical characteristics via drilling or probing, and through the limited application of geophysical methods. Active seismic methods have been most widely employed, especially for petroleum exploration, but recently passive methods have been used to investigate the seabed using ambient noise. The Horizontal-to-Vertical Spectral Ratio (HVSR) method has previously been shown to accurately determine permafrost thaw depth below the sea floor in marine and lacustrine environments, based on the collection of seismic data over a period of weeks. In this study, we test the use of short-term seabed HVSR seismic surveys and explore possibilities for optimizing the method in a wide variety of subaquatic environments. The method was successfully used in a thermokarst lake, a lagoon and river channels of the Lena Delta (Russia), as well as in marine shelf environments in the Laptev Sea (Russia) and Tuktoyaktuk Island (NW Canada). Study areas where validation data was available were preferred and selected when possible. A passive seismic measuring device, consisting of a watertight metal cannister containing three-component broad-band seismometers, was lowered down to the sea floor from a small boat and left to collect data for 3-4 minutes. The data was recorded at a sample rate of 100Hz. Post-processing and analysis were done with MATLAB. The three seismic signals were individually detrended, the offset was removed and the power spectral density was calculated. The smoothing function proposed by Konno and Ohmachi (1998) was applied to each signal with a smoothing coefficient of 40. Lastly the H/V (Horizontal / Vertical) amplitude was calculated. The H/V amplitude was plotted against signal frequencies from 0 to 50 Hz. The peak resonance frequency is believed to indicate the ice-bonded permafrost table (IBPT) thereby enabling us to determine thaw depth from the H/V plots, assuming a simple 2-layer model: thawed layer over frozen ground, characterized by low and high wave speeds, respectively. Results generally display a good correlation, on average within 0.6 meters, between the thaw depth determined from HVSR and from physical validation, although HVSR often generates a thaw depth deeper than indicated by validation data. This may be a result of complex permafrost systems where several “zones” of frozen and unfrozen ground, of varying thickness, is present below the water bodies. We conclude that the method has the potential to be an effective (fast) non-invasive tool for investigating the extent and, if repeated, the thaw rate of subaquatic permafrost. Further field testing is planned in order to continue the development and optimization of the method.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...