ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2020-2022  (5)
Collection
Publisher
Years
Year
  • 1
    Publication Date: 2020-12-20
    Description: Ultraslow spreading ridges form the slowest divergent plate boundaries on Earth. Their distinct spreading processes build volcanically active magmatic segments in between amagmatic segments that exhibit mantle rocks at the seafloor. Local seismicity studies along ultraslow spreading ridges are up to now limited in their extend and can only give insights into spreading processes of segment parts. With our new microseismicity dataset we extend the coverage to multiple segments allowing us to study spreading processes on the scale of entire segments. The network of ocean bottom seismometers consisted of 26 stations deployed for one year approximately 160 km along the Knipovich Ridge in the Greenland Sea. More than 8000 events were reliably located with HYPOSAT and they exhibit a varying seismicity pattern along the rift axis. Maximum earthquake hypocentres shallow over distances of 70 km towards the Logachev volcanic centre, where swarm activity occurs in an otherwise aseismic zone. The undulating brittle-ductile boundary might map the focusing of melt towards major volcanic centres along the parallel lithosphere-asthenosphere boundary. Numerous earthquake swarms close by the volcanic centre indicate its current activity. The absence of shallow seismicity in the upper 8 km underlain by a band of seismicity characterizes presumably melt-poor regions. Both boundaries of the seismicity band are supposedly temperature controlled. Aseismic zones may mark areas, where mantle rocks are altered and too weak to exhibit seismicity recorded by our network. One of the studied segments cannot be identified as magmatic or amagmatic, rather the reorientation of the ridge axis in this area and related changes in the stress regime might lead to a more complex seismicity pattern. Although detachment faults are expected along amagmatic spreading segments, we do not observe clear indication on this type of faulting. We observe a fine-scale segmentation of seismic activity similar to a stripe and gap pattern, where the seismicity band narrows and only little activity is observed within an otherwise broad seismicity band. This can possibly indicate transform motion on short obliquely oriented faults producing small magnitude events not recorded by our network.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-01-19
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-01-28
    Description: Ultraslow spreading ridges form the slowest divergent plate boundaries and exhibit distinct spreading processes in volcanically active magmatic sections and intervening amagmatic sections. Local seismicity studies of ultraslow spreading ridges until now cover only parts of segments and give insight into spreading processes at confined locations. Here we present a microseismicity dataset that allows to study spreading processes on the scale of entire segments. Our network of 26 ocean bottom seismometers covered around 160 km along axis of the ultraslow spreading Knipovich Ridge in the Greenland Sea and recorded earthquakes for a period of about one year. We find seismicity varying distinctly along‐axis. The maximum earthquake depths shallow over distances of 70 km towards the Logachev volcanic center. Here, swarm activity occurs in an otherwise aseismic zone. Melts may thus be guided along the subparallel topography of the lithosphere‐asthenosphere boundary towards major volcanic centers explaining the uneven along‐axis melt distribution typical for ultraslow ridges. Absence of shallow seismicity in the upper 8 km of the lithosphere with a band of deep seismicity underneath offsets presumably melt‐poor regions from magma richer sections. Aseismic deformation in these regions may indicate weakening of mantle rocks by alteration. We do not find obvious indications for major detachment faulting that characterizes magma‐poor spreading at some ultraslow spreading segments. The highly oblique spreading of Knipovich Ridge may be the reason for a fine‐scale segmentation of the seismic activity with zones of weak seismicity possibly indicating transform motion on short obliquely oriented faults.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-07-21
    Description: Ultraslow spreading ridges form the slowest divergent plate boundaries and exhibit distinct spreading processes in volcanically active magmatic sections and intervening amagmatic sections. Local seismicity studies of ultraslow spreading ridges until now cover only parts of segments and give insight into spreading processes at confined locations. Here, we present a microseismicity data set that allows to study spreading processes on the scale of entire segments. Our network of 26 ocean bottom seismometers covered around 160 km along axis of the ultraslow spreading Knipovich Ridge in the Greenland Sea and recorded earthquakes for a period of about 1 year. We find seismicity varying distinctly along‐axis. The maximum earthquake depths shallow over distances of 70 km toward the Logachev volcanic center. Here, swarm activity occurs in an otherwise aseismic zone. Melts may thus be guided along the subparallel topography of the lithosphere‐asthenosphere boundary toward major volcanic centers explaining the uneven along‐axis melt distribution typical for ultraslow ridges. Absence of shallow seismicity in the upper 8 km of the lithosphere with a band of deep seismicity underneath offsets presumably melt‐poor regions from magma richer sections. Aseismic deformation in these regions may indicate weakening of mantle rocks by alteration. We do not find obvious indications for major detachment faulting that characterizes magma‐poor spreading at some ultraslow spreading segments. The highly oblique spreading of Knipovich Ridge may be the reason for a fine‐scale segmentation of the seismic activity with zones of weak seismicity possibly indicating transform motion on short obliquely oriented faults.
    Description: Plain Language Summary: At mid‐ocean spreading ridges, tectonic plates drift apart and new seafloor is built by upwelling magma. The slowest spreading ridges do not receive enough magma to build new seafloor along the entire ridge. Rather, they show widely spaced volcanic centers with magma‐poor areas in‐between. The study of small earthquakes with seismometers placed on the seafloor has greatly helped to understand how new seafloor forms. Since such studies require substantial logistic effort, only confined ridge sections have been studied and spreading processes operating at segment‐scale remain poorly understood. In this study, we present for the first time observations of earthquakes covering several segments and one major volcanic center along the Knipovich Ridge in the Greenland Sea. Underneath the volcano, earthquake swarms and a gap in seismicity indicate recent magmatic activity. The maximum depth of earthquakes marks the thickness of the mechanically strong lithosphere. It shallows over 70 km toward the volcano such that melts can be channeled over large distances to the prominent volcanoes. Magma‐poor regions have deep earthquakes but do not show earthquake activity in the upper 8 km. We suppose that water reacts with the mantle rocks that become too weak to break in earthquakes.
    Description: Key Points: Magma‐poor sections are distinguished from magma‐rich sections by deeper hypocenters and an absence of shallow seismicity. Shallowing maximum earthquake depths over distances of 70 km suggest along‐axis melt focusing toward major volcanic centers. Major detachment faults on the highly oblique spreading Knipovich Ridge were not obvious in the observed seismicity.
    Description: Deutsche Forschungsgemeinschaft (DFG) http://dx.doi.org/10.13039/501100001659
    Description: Helmholtz Excellence Network POSY at the Alfred Wegener Institute
    Description: Ministry of Science and Higher Education of Poland
    Keywords: 551 ; amagmatic ; Knipovich Ridge ; mid‐ocean ridge ; segmentation ; seismicity ; ultraslow spreading
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...