ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2020-2022  (2)
Collection
Publisher
Years
Year
  • 1
    Publication Date: 2020-11-09
    Description: Climate projections are made using a hierarchy of models of different complexities and computational efficiencies. While the most complex climate models contain the most detailed representations of many physical processes within the climate system, both parameter space exploration and integrated assessment modelling require the increased computational efficiency of reduced-complexity models. This study presents a computationally efficient method for generating probabilistic projections of local warming across the globe, using a pattern-scaling approach derived from the Climate Model Intercomparison Project phase 5 (CMIP5) ensemble, that can be coupled to any efficient model ensemble simulation of global mean surface warming. While the method can project local warming for arbitrary future scenarios, using it for scenarios with peak global mean warming ≤2 ∘C is problematic due to the large uncertainties involved. First, global mean warming is projected using a 103-member ensemble of history-matched simulations with an example reduced complexity Earth system model: the Warming Acidification and Sea-level Projector (WASP). The ensemble projection of global mean warming from this WASP ensemble is then converted into local warming projections using a pattern-scaling analysis from the CMIP5 archive, considering both the mean and uncertainty of the local to global ratio of temperature change (LGRTC) spatial patterns from the CMIP5 ensemble for high-end and mitigated scenarios. The LGRTC spatial pattern is assessed for scenario dependence in the CMIP5 ensemble using RCP2.6, RCP4.5 and RCP8.5, and spatial domains are identified where the pattern scaling is useful across a variety of arbitrary scenarios. The computational efficiency of our WASP–LGRTC model approach makes it ideal for future incorporation into an integrated assessment model framework or efficient assessment of multiple scenarios. We utilise an emergent relationship between warming and future cumulative carbon emitted in our simulations to present an approximation tool making local warming projections from total future carbon emitted.
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-10-31
    Description: Reduced-complexity climate models (RCMs) are critical in the policy and decision making space, and are directly used within multiple Intergovernmental Panel on Climate Change (IPCC) reports to complement the results of more comprehensive Earth system models. To date, evaluation of RCMs has been limited to a few independent studies. Here we introduce a systematic evaluation of RCMs in the form of the Reduced Complexity Model Intercomparison Project (RCMIP). We expect RCMIP will extend over multiple phases, with Phase 1 being the first. In Phase 1, we focus on the RCMs' global-mean temperature responses, comparing them to observations, exploring the extent to which they emulate more complex models and considering how the relationship between temperature and cumulative emissions of CO2 varies across the RCMs. Our work uses experiments which mirror those found in the Coupled Model Intercomparison Project (CMIP), which focuses on complex Earth system and atmosphere–ocean general circulation models. Using both scenario-based and idealised experiments, we examine RCMs' global-mean temperature response under a range of forcings. We find that the RCMs can all reproduce the approximately 1 ∘C of warming since pre-industrial times, with varying representations of natural variability, volcanic eruptions and aerosols. We also find that RCMs can emulate the global-mean temperature response of CMIP models to within a root-mean-square error of 0.2 ∘C over a range of experiments. Furthermore, we find that, for the Representative Concentration Pathway (RCP) and Shared Socioeconomic Pathway (SSP)-based scenario pairs that share the same IPCC Fifth Assessment Report (AR5)-consistent stratospheric-adjusted radiative forcing, the RCMs indicate higher effective radiative forcings for the SSP-based scenarios and correspondingly higher temperatures when run with the same climate settings. In our idealised setup of RCMs with a climate sensitivity of 3 ∘C, the difference for the ssp585–rcp85 pair by 2100 is around 0.23∘C(±0.12 ∘C) due to a difference in effective radiative forcings between the two scenarios. Phase 1 demonstrates the utility of RCMIP's open-source infrastructure, paving the way for further phases of RCMIP to build on the research presented here and deepen our understanding of RCMs.
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...