ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2020-2022  (6)
Collection
Publisher
Language
Years
Year
  • 1
  • 2
    Publication Date: 2020-07-01
    Print ISSN: 0016-7037
    Electronic ISSN: 1872-9533
    Topics: Chemistry and Pharmacology , Geosciences
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-07-15
    Description: Diagenesis of carbonate minerals is ubiquitous throughout the geologic record. Alteration is initiated immediately after deposition, or takes place in the endo- and exoskeletons as early as during the lifetime of a given carbonate-secreting biota, and can continue throughout the burial history of carbonate sediments and rocks. Variations in the diagenetic response of carbonate archives pose challenges for the reconstruction of past environmental conditions based on proxy data. This paper comparatively assesses alteration features of different aragonitic materials by experimentally-induced diagenesis. A multitude of factors lead to different reactivity and responses of a given aragonite archive, and provide insight to the interpretation of diagenetically altered material in the rock record. Chosen materials used in this study include relatively organic-rich samples such as coral skeletons and bivalve shells, and organic-lean abiotic carbonates such as speleothems and aragonite single crystals. Obtained datasets include distributions of elements, organics, carbon and oxygen isotope ratios, and crystallographic features. Observed variations in diagenetic responses include mineralogy of the diagenetic phases, rate and extent of mineral transformation, distribution of foreign ions in the crystal lattice (primarily Sr, Mg, and S), and the number of specific processes and products along diagenetic pathways. Alteration is shown to be primarily controlled by the initial diagenetic susceptibility of the sample (including porosimetry and structural characteristics, concentrations of organic material, and primary amounts of trace elements in the carbonate, such as Mg). Structural characteristics lead to initial internally “fluid-” or “rock-buffered” conditions, with low porosity and permeability resulting in a greater effect of internal fluids and organics. Differences in the amount of organic content and internal fluids affect transformation rates, secondary mineralogy, and isotope equilibria. Samples with relatively high porosity, high mineral transformation rates, and high primary Mg/Ca, may preferentially form secondary aragonite during fast equilibration with the diagenetic environment. Our results suggest that the degree and nature of diagenetic alteration of aragonite materials are strongly controlled by the micro- to nano-scale internal architecture governing the availability and transfer of aqueous fluids. Results of this study provide significant implications for the interpretation of diagenetic signals in carbonate archives, and have direct significance for the mechanistic understanding of carbonate diagenesis and (paleo)environmental conditions.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-02-08
    Description: The transition from the Proterozoic to the Phanerozoic Eon was accompanied by the rise of metazoan life, a key and unique biogeochemical milestone in Earth's history. Concomitant continental re-organization and collision were associated with enhanced continental reworking and changes in global ocean currents, with profound impacts on continental weathering rates, riverine run-off and associated changes in the ocean nutrient budget. The causal relationship between the geological re-organisation of continents and the biologic evolution of marine life, however, remains elusive. In this study, we investigate phosphatic shallow-water sedimentary successions from Kazakhstan, which host key marker horizons from the Precambrian-Cambrian (Pc-C) boundary. We show that a rapid change (over ca. 3 Myrs) towards heavier stable Mg isotope compositions of the phosphatic sedimentary deposits in Kazakhstan, which we consider representative for contemporaneous ocean chemistry, co-varies with changes in radiogenic Sr isotope signatures. We propose that ocean chemistry at the Pc-C boundary, represented through this co-variation, was strongly affected by continental re-organization and associated weathering, which, in analogy, would have affected ocean nutrient levels. A rapid reversal of isotope compositions towards signatures similar to those prior to the isotope excursion likely reflects the fading influence of weathering and a buffering of water-rock interactions during oceanic spreading. We conclude that, based on the positive, coupled 87Sr/86Sr- δ26Mg isotope spike in ocean water chemistry, a link between Gondwana re-organization at the Pc-C boundary and the marked change in marine fauna seems plausible.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2020-12-14
    Description: A coupled elemental-isotopic approach is applied to reconstruct the origin and chemical evolution of mine drainage, groundwater, and brines from the Carboniferous anthracite coal mine in Ibbenbüren, Germany. All solutions are characterized by an increase in salinity with depth, as well as by an increase in 34S/32S isotopic ratios of dissolved SO42-. Br/Cl and Na/Cl ratios in deep Na-Cl-type water indicate halite dissolution as the common source of salinity. δ34SSO4 values increase up to +21.1‰ (VCDT), linking the salinity to the migration of groundwater from the surrounding Mesozoic sediments. 87Sr/86Sr ratios between 0.7108 and 0.7135 and elevated alkali concentrations indicate ongoing water-rock interaction of the evaporite-derived brines with the Carboniferous siliciclastic rocks of the mine. A positive correlation of 87Sr/86Sr ratios with δ2HH2O and δ18OH2O values suggests mixing of the brines with isotopically heavy formation water within the Carboniferous bedrock. The oxidation of pyrite is the dominant sulfate source in shallow mine drainage and groundwater with a relatively low ionic strength (I 〈 0.035), as indicated by δ34SSO4 values between −8.3 and + 0.3‰ (VCDT). Intermediate water compositions are the result of the dilution of brines with shallow water. In any case, modern meteoric water with δ18OH2O values between −6.9 and −8.65‰ (VSMOW) is the primary water source for brines, groundwater, and mine drainage.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2021-02-17
    Description: We undertook 87Sr/86Sr analyses for a range of carbonate bearing geological reference materials, and combined these with δ26Mg for a subset of samples. Following chemical purification in a series of chromatographic extractions, isotope ratios were measured by Multi-Collector-ICP-MS using a Plasma II (Nu instruments, Wrexham, UK). To validate efficient sample digestion procedures of carbonate fractions, total samples were treated with either 3 mol l−1 HNO3 and 0.5 mol l−1 HCl, respectively. Results of both leaching procedures are identical within reproducibility. Reference values for SRM 88A (formerly NBS 88A), SRM 1B (formerly NBS 1B), SARM 40, SARM 43, JDo-1, JLs-1, and San Carlos olivine range from 0.70292 to 0.73724 in 87Sr/86Sr and from -2.80 to -0.41 ‰ for δ26Mg, respectively. This set of geological reference materials can be used for sedimentary rock material with different carbonate mineral and matrix composition as quality control measurements of combined stable Mg and radiogenic Sr isotope analyses. • We present a protocol that facilitates the chemical separation of Mg and Sr in carbonate bearing geological reference materials including 87Sr/86Sr and δ26Mg of certified reference materials.
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...