ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Oxford University Press  (2)
  • Springer
  • 2020-2022  (2)
Collection
Publisher
  • Oxford University Press  (2)
  • Springer
Years
Year
  • 1
    Publication Date: 2020-05-23
    Description: Between 2016 May and 2018 September, the intermediate polar (IP) FO Aquarii exhibited two distinct low states and one failed low state. We present optical spectroscopy of FO Aquarii throughout this period, making this the first detailed study of an accretion disc during a low state in any IP. Analysis of these data confirm that the low states are the result of a drop in the mass transfer rate between the secondary star and the magnetic white dwarf primary, and are characterized by a decrease in the system’s brightness coupled with a change of the system’s accretion structures from an accretion disc-fed geometry to a combination of disc-fed and ballistic stream-fed accretion, and that effects from accretion on to both magnetic poles become detectable. The failed low state only displays a decrease in brightness, with the accretion geometry remaining primarily disc-fed. We also find that the WD appears to be exclusively accretion disc-fed during the high state. There is evidence for an outflow close to the impact region between the ballistic stream and the disc which is detectable in all of the states. Finally, there is marginal evidence for narrow high-velocity features in the H α emission line during the low states which may arise due to an outflow from the WD. These features may be evidence of a collimated jet, a long predicted yet elusive feature of cataclysmic variables.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-07-03
    Description: We analyse rapid-cadence, multiwavelength photometry of AR Scorpii from three observatories, covering five observing seasons. We measure the arrival times of the system’s beat pulses and use them to compute an updated ephemeris. The white dwarf spin-down rate is estimated with an uncertainty of only 4 per cent. These results confirm, beyond any doubt, that the white dwarf’s spin period is increasing at the rate consistent with by that of Stiller et al. (2018). We study the evolution of the beat pulse’s colour index across the orbit. The colour of the primary pulse maxima varies significantly across the orbit, with the peaks being bluer after superior conjunction than in the first half of the orbit. Specifically, at orbital phase 0.5, the colour index of the primary pulse shows a very sharp discontinuity towards bluer indices. This supports the Potter & Buckley (2018b) synchrotron emission model where the two emitting poles differ significantly in colour. However, no corresponding jump in the colour of the secondary pulses is seen. Furthermore, our analysis reveals that the arrival times of the pulses can differ by as much as 6 s in simultaneous u and r photometry, depending on the binary orbital phase. If left uncorrected, this wavelength-dependent timing offset could lead to erroneous measurements of the spin-period derivative, particularly with heterogeneous data sets.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...