ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Oxford University Press  (4)
  • Institute of Physics Publishing (IOP)
  • Hindawi
  • 2020-2022  (4)
Collection
Publisher
Years
Year
  • 1
    Publication Date: 2020-08-12
    Description: Insect outbreaks of increasing frequency and severity in forests are predicted due to climate change. Insect herbivory is known to promote physiological changes in forest trees. However, little is known about whether these plant phenotypic adjustments have cascading effects on tree microbial symbionts such as fungi in roots and foliage. We studied the impact of defoliation by the pine processionary moth in two infested Pinus nigra forests through a multilevel sampling of defoliated and non-defoliated trees. We measured tree growth, nutritional status and carbon allocation to chemical defenses. Simultaneously, we analysed the putative impact of defoliation on the needle endophytes and on the soil fungal communities. Higher concentrations of chemical defenses were found in defoliated trees, likely as a response to defoliation; however, no differences in non-structural carbohydrate reserves were found. In parallel to the reductions in tree growth and changes in chemical defenses, we observed shifts in the composition of needle endophytic and soil fungal communities in defoliated trees. Defoliated trees consistently corresponded with a lower biomass of ectomycorrhizal fungi in both sites, and a higher alpha diversity and greater relative abundance of belowground saprotrophs and pathogens. However, ectomycorrhizal alpha diversity was similar between non-defoliated and defoliated trees. Specific needle endophytes in old needles were strongly associated with non-defoliated trees. The potential role of these endophytic fungi in pine resistance should be further investigated. Our study suggests that lower biomass of ectomycorrhizal fungi in defoliated trees might slow down tree recovery since fungal shifts might affect tree-mycorrhizal feedbacks and can potentially influence carbon and nitrogen cycling in forest soils.
    Print ISSN: 0829-318X
    Electronic ISSN: 1758-4469
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-03-18
    Description: Drought limits the long-distance transport of water in the xylem due to the reduced leaf-to-soil water potential difference and possible embolism-related losses of conductance and of sugars in the phloem due to the higher viscosity of the dehydrated sugary solution. This condition can have cascading effects in water and carbon (C) fluxes that may ultimately cause tree death. We hypothesize that the maintenance of xylem and phloem conductances is fundamental for survival also under reduced resource availability, when trees may produce effective and low C cost anatomical adjustments in the xylem and phloem close to the treetop where most of the hydraulic resistance is concentrated. We analyzed the treetop xylem and phloem anatomical characteristics in coexisting Scots pine trees, symptomatic and non-symptomatic of drought-induced dieback. We selected the topmost 55 cm of the main stem and selected several sampling positions at different distances from the stem apex to test for differences in the axial patterns between the two groups of trees. We measured the annual ring area, the tracheid hydraulic diameter (Dh) and cell wall thickness (CWT), the conductive phloem area and the average lumen diameter of the 20 largest phloem sieve cells (Dph). Declining trees grew less than the non-declining ones, and despite the similar axial scaling of anatomical traits, had larger Dh and lower CWT. Moreover, declining trees had wider Dph. Our results demonstrate that even under drought stress, maintenance of xylem and phloem efficiencies is of primary importance for survival, even if producing fewer larger tracheids may lead to a xylem more vulnerable to embolism formation.
    Print ISSN: 0829-318X
    Electronic ISSN: 1758-4469
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-03-03
    Description: Individual differences in the access to deep soil water pools may explain the differential damage among coexisting, conspecific trees as a consequence of drought-induced dieback. We addressed this issue by comparing the responses to a severe drought of three Mediterranean oak species with different drought tolerance, Quercus pubescens L. and Quercus frainetto Ten., mainly thriving at xeric and mesic sites, respectively, and Quercus cerris L., which dominates at intermediate sites. For each species, we compared coexisting declining (D) and non-declining (ND) trees. The stable isotope composition (δ2H, δ18O) of xylem and soil water was used to infer a differential use of soil water sources. We also measured tree size and radial growth to quantify the long-term divergence of wood production between D and ND trees and non-structural carbohydrates (NSCs) in sapwood to evaluate if D trees presented lower NSC values. The ND trees had access to deeper soil water than D trees except in Q. frainetto, as indicated by significantly more depleted xylem water values. However, a strong δ2H offset between soil and xylem water isotopes observed in peak summer could suggest that both tree types were not physiologically active under extreme drought conditions. Alternative processes causing deuterium fractionation, however, could not be ruled out. Tree height and recent (last 15–25 years) growth rates in all species studied were lower in D than in ND trees by 22 and 44%, respectively. Lastly, there was not a consistent pattern of NSC sapwood concentration; in Q. pubescens, it was higher in ND trees while in Q. frainetto, the D trees were the ones exhibiting the higher NSC concentration. We conclude that the vulnerability to drought among conspecific Mediterranean oaks depends on the differential access to deep soil water pools, which may be related to differences in rooting depth, tree size and growth rate.
    Print ISSN: 0829-318X
    Electronic ISSN: 1758-4469
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-12-17
    Print ISSN: 0829-318X
    Electronic ISSN: 1758-4469
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...