ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-119X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract  Until now, many extracellular matrix proteins, e.g. osteopontin and osteonectin, have been used to determine a cell’s osteogenic maturation. The disadvantage in evaluation of these proteins is their relative wide-ranging appearance throughout the osteogenic differentiation process. Thus, the aim of this study was to establish an immunohistochemical setup using E11, a marker that binds selectively to cells of the late osteogenic cell lineage. In addition, the histochemical expression of the bone matrix proteins osteonectin, osteopontin and fibronectin was compared to that of E11 using monoclonal antibodies. For light microscopical detection of osteogenic markers in cultured cells we developed a simple paraffin technique using a fibrin glue as embedding medium. This allows the handling of cultured cells such as a tissue sample and includes the use of stored biological specimens for further immunohistochemical experiments. We used newborn rat calvariae for whole tissue preparations and for isolation and cultivation of bone cells. In addition, we included the rat osteosarcoma cell line ROS 17/2.8 in this study. For the first time, we have localised E11 in osteocytes of rat calvaria preparations at the electron microscopical level. E11 was detected at plasma membranes of osteocytes and their processes, but not at those of osteoblasts. Accompanying experiments with cultured newborn rat calvaria cells and ROS 17/2.8 cells revealed E11 reactivity on a subset of cells. The results obtained confirm the suitability of the differentiation marker E11 as a sensitive instrument for the characterisation of bone cell culture systems.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-2285
    Keywords: Branch cross-sectional area ; Leaf area ; Leaf biomass ; Picea abies ; Sapwood area
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary The relationship of leaf biomass and leaf area to the conductive area of stems and branches was investigated in Picea abies. A total of 30 trees were harvested to determine if these relationships were different in different crown zones and in trees growing with and without competition for light. Two methods were compared. In the first, data were accumulated from crown zones situated at the top of trees to the bottom; in the second, data were used from individual crown zones. The results indicated that the latter method is much more sensitive in detecting differences in the relationship of leaf biomass or leaf area to conductive area. The analysis also indicated that ratios such as leaf area/sapwood area are frequently size-dependent. This size-dependency can in some cases result in the differences being abscured, but more often leads to the false impression that the relationship between the variables changes. The relationship between leaf biomass and leaf area and conductive area of stems or branches was different in different crown zones and under different growth conditions. The slopes of these regressions appear to increase with decreasing transpirational demand and decrease with increasing hydraulic conductivity. The intercepts are probably related to the amount of identified sapwood actually involved in water conductance.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-2285
    Keywords: P/V curve ; Picea abies ; Aerial uptake ; Bark permeability ; Mass flow
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary Uptake of water and magnesium chloride solution was investigated through the outer surface of twigs of Picea abies (L.) Karst. Water uptake was determined by using pressure/volume (P/V) curves of the twigs as a basis for calculation to avoid problems of superficial extraneous water. When water was sprayed on bark and needles of 3- to 7-year-old twigs at a xylem water potential of -1.00 MPa, they absorbed as much as 80 mm3 water in 200 min/g twig dry weight as the twig water potential recovered to -0.15 MPa. With fluorescent dyes, pathways for absorption of water and solutes through the twig bark were found, particularly through the radially orientated ray tissue. In addition to uptake by mass flow, magnesium could also diffuse along a concentration gradient from the twig surface into the xylem. In the field, the magnitude of these uptake processes would depend on the concentration of elements deposited by atmospheric precipitation, the concentration gradient between the plant surface and the xylem sap, the xylem water potential and the intensity and duration of each precipitation event.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Trees 1 (1987), S. 219-224 
    ISSN: 1432-2285
    Keywords: Larix ; Heterosis ; Photosynthesis ; Stomatal conductance
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary Individual 33-year-old forest trees of the deciduous conifer speciesLarix decidua, Larix leptolepis andLarix decidua x leptolepis were investigated with respect to the phenomenon of stem heterosis in hybrid larch; the first part of this study compares the gas exchange responses of leaves. CO2 assimilation per leaf area was similar in the three larch species, but on a dry weight basis the nitrogen content of the needles and maximum CO2 assimilation rate (Amax) were slightly higher in the hybrid. This increase was accompanied by a higher protein content than in the Japanese and a lower specific leaf weight than in the European larch. All three species were similar in terms of the photosynthetic “nitrogen use” and stomatal conductance atA max. The similar slopes of the area-related steady-state responses of gas exchange against irradiance, evaporative demand and internal CO2 concentration led to similar rates of CO2 uptake under ambient conditions. The natural combinations and variability of the environmental factors also reduced the small dry weight-related difference inA max between hybrid larch and the parent species, such that all trees achieved similar daily carbon gains. Thus, the ecological significance of small interspecific differences in the metabolism of leaves has very little effect under the natural habitat conditions of a temperate climate. The second part of the study will investigate the effect of growth characteristics on the heterosis of hybrid larch.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Trees 1 (1987), S. 225-231 
    ISSN: 1432-2285
    Keywords: Larix ; Heterosis ; Growth ; Branching pattern ; Needle density
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary Among 33-year-old forest trees ofLarix decidua, L. leptolepis andL. decidua x leptolepis, the hybrid possessed an above-ground biomass which was three times greater, although all larches displayed similar relative distributions of biomass. At a “relative growth rate” slightly lower than in the parent species, hybrid larch achieved twice the annual carbon gain, increment in stem length and above-ground production, and its foliage-related stem growth was higher than in European (L. decidua) but similar to Japanese (L. leptolepis) larch. A similar “relative growth efficiency” and foliage-related total above-ground production in all trees did reflect the similarity of photosynthetic capacity of the hybrid found at the leaf level. While the lengths of lateral twigs on hybrid branches were intermediate between the European larch with short, and the Japanese larch with large, twigs the hybrid possessed the longest branches with the highest needle biomass. This resulted in a crown structure of the hybrid crown similar to the Japanese larch together with a high needle density on branches as in the European larch. In total, the foliage biomass per crown length was about 30% higher in hybrid larch than in both of the parent species. Thus, the high carbon input for the stem heterosis was based on a “complementation principle” of advantageous parent features at the crown level. Similar slopes of foliage against sapwood area of stem and branches did not indicate a special need for a thick hybrid stem with respect to water transport.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1432-2285
    Keywords: Larix ; Carbon uptake ; Respiration ; Carbon balances ; Water loss ; Sun and shade branches
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary Shade needles of hybrid larch (Larix decidua × leptolepis) had the same rates of photosynthesis as sun needles per dry weight and nitrogen, and a similar leaf conductance under conditions of light saturation at ambient CO2 (Amax). However, on an area basis, Amax and specific leaf weight were lower in shade than in sun needles. Stomata of sun needles limited CO2 uptake at light saturation by about 20%, but under natural conditions of light in the shade crown, shade needles operated in a range of saturating internal CO2 without stomatal limitation of CO2 uptake. In both needle types, stomata responded similarly to changes in light, but shade needles were more sensitive to changes in vapor pressure deficit than sun needles. Despite a high photosynthetic capacity, the ambient light conditions reduced the mean daily (in summer) and annual carbon gain of shade needles to less than 50% of that in sun needles. In sun needles, the transpiration per carbon gain was about 220 mol mol−1 on an annual basis. The carbon budget of branches was determined from the photosynthetic rate, the needle biomass and respiration, the latter of which was (per growth and on a carbon basis) 1.6 mol mol−1 year−1 in branch and stem wood. In shade branches carbon gains exceeded carbon costs (growth + respiration) by only a factor of 1.6 compared with 3.5 in sun branches. The carbon balance of sun branches was 5 times higher per needle biomass of a branch or 9 times higher on a branch length basis than shade branches. The shade foliage (including the shaded near-stem sun foliage) only contributed approximately 23% to the total annual carbon gain of the tree.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 371 (1994), S. 60-62 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Plant water use (transpiration, E) is regulated by the available energy (Rn) and air saturation deficit (D) above the canopy (Fig. \a}. The relative importance of these two factors in regulating plant or ecosystem water use is theoretically summarized in a decoupling coefficient, Q, (OQ 1) derived ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2018-06-08
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1573-5052
    Keywords: Canopy ; Evaporation ; Leaf area index ; Scaling ; Surface conductance ; Stomata
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract We examine conductances for evaporation from both vegetation and soil in response to environmental variables. Data from a vertically-structured pristine forest of Nothofagus are presented as an example of the effects of biodiversity on the scaling of conductances between tiers of plant organisation. Available data sets of maximum leaf stomatal conductances (g lmax ) and bulk vegetation surface conductances (G smax ) are compared. Overall, the ratio G smax /g lmax is consistently close to 3 for seven major vegetation types of diverse structure. An analytical model accounts for this close relationship, and in particular how G smax is conservative against changes in leaf area index because of the compensating decrease in plant canopy transpiration and increase in soil evaporation as leaf area index diminishes. The model is also successfully tested by comparison with canopy conductances of emergent trees measured in the Nothofagus forest. The constraint of vegetation surface conductance and evaporation via environmental regulation by irradiance, air saturation deficit and root zone water supply are discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Root exudates were sampled from detopped root systems of castor bean (Ricinus communis). Different volume flux rates were imposed by changing the pneumatic pressure around the root system using a Passioura-type pressure chamber. The concentrations of cations, anions, amino acids, organic acids and abscisic acid decreased hyperbolically when flux rates increased from pure root exudation up to values typical for transpiring plants. Concentrations at low and high fluxes differed by up to 40 times (phosphate) and the ratio of substances changed by factors of up to 10. During the subsequent reduction of flux produced by lowering the pneumatic pressure in the root pressure chamber, the concentrations and ratios of substances deviated (at a given flux rate) from those found when flux was increased. The flux dependence of exudate composition cannot therefore be explained by a simple dilution mechanism. Xylem sap samples from intact, transpiring plants were collected using a Passioura-type root pressure chamber. The concentrations of the xylem sap changed diurnally. Substances could be separated into three groups: (1) calcium, magnesium and amino acid concentrations correlated well with the values expected from their concentration-flux relationships, whereas (2) the concentrations of sulphate and phosphate deviated from the expected relationships during the light phase, and (3) nitrate and potassium concentrations in intact plants varied in completely the opposite manner from those in isolated root systems. Abscisic acid concentrations in the root exudate were dependent on the extent of water use and showed strong diurnal variations in the xylem sap of intact plants even in droughtstressed plants. Calculations using root exudates overestimated export from the root system in intact plants, with the largest deviation found for proton flux (a factor of 10). We conclude that root exudate studies cannot be used as the sole basis for estimating fluxes of substances in the xylem of intact plants. Consequences for studying and modelling xylem transport in whole plants are discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...