ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1990-1994  (35)
  • 1
    Publication Date: 2011-08-19
    Description: Results on NO2 instruments are reported from the NASA Global Tropospheric Experiment Chemical Instrumentation Test and Evaluation 2 (CITE 2) program in summer 1986. The instruments tested were (1) a two-photon LIF system using a laser for NO2-NO photolysis, (2) a chemiluminescence (CL) detector using FeSO4 for NO2-NO conversion, (3) a CL detector using an arc lamp for NO2-NO photolysis, and (4) a tunable-laser-diode multipath-absorption system. The procedures for the CITE 2 ground-based and flight tests are described in detail, and the results are presented in extensive graphs. Instrument (2) was eliminated because the FeSO4 converted atmospheric PAN to NO, resulting in spuriously high NO2 values. The remaining instruments gave readings in 30-40-percent agreement at NO2 mixing ratios of 100-200 parts per trillion by volume (pptv). At ratios below 50 pptv, the correlation among the measurements was very poor, with a tendency for system (4) to give higher values than (1) or (3).
    Keywords: AIRCRAFT INSTRUMENTATION
    Type: Journal of Geophysical Research (ISSN 0148-0227); 95; 10103-10
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-08-24
    Description: The partitioning of relative nitrogen in the Arctic and the sub-Arctic troposphere based on measurements conducted during the 1988 Arctic Boundary Layer Expedition (ABLE 3A) is described. The first set of comprehensive odd nitrogen and O3 measurements from the Arctic/sub-Arctic free troposphere shows that a highly aged air mass that has persisted under very cold conditions is present. A large fraction of the odd nitrogen appears to be present in the form of reservoir species such as PAN. Significant quantities of as yet unknown reactive nitrogen species, such as complex alkyl nitrates and pernitrates, are expected to be present. Together with PAN, these nitrate and pernitrate reservoir species could control the entire NO(x) availability of the high-latitude troposphere and in turn influence the O3 photochemistry of the region. The role of PAN in influencing the O3 reservoir is shown to be important and may be responsible for the increasing O3 temporal trend observed at high latitudes.
    Keywords: ENVIRONMENT POLLUTION
    Type: Journal of Geophysical Research (ISSN 0148-0227); 97; D15; p. 16,523-16,530.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-08-24
    Description: Measurements of PAN and other reactive nitrogen species during the NASA Arctic Boundary Layer Expedition (ABLE 3A) are described, their north-south and east-west gradients in the free troposphere are characterized, and the sources and sinks of PAN and NO(y) are assessed. Large concentrations of PAN and NO(y) are present in the Arctic/sub-Arctic troposphere of the Northern Hemisphere during the summer. Mixing ratios of PAN and a variety of other molecules are more abundant in the free troposphere compared to the boundary layer. Coincident PAN and O3 atmospheric structures suggest that phenomena that define PAN also define the corresponding O3 behavior. Model calculations, correlations between NO(y) and anthropogenic tracers, and the compositions of NO(y) itself suggest that the Arctic/sub-Arctic reactive nitrogen measured during ABLE 3A is predominantly of anthropogenic origin with a minor component from the stratosphere.
    Keywords: ENVIRONMENT POLLUTION
    Type: Journal of Geophysical Research (ISSN 0148-0227); 97; D15; p. 16,511-16,522.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-08-24
    Description: Results obtained from five techniques for measuring gas-phase ammonia at low concentration in the atmosphere are compared. These methods are: (1) a photofragmentation/laser-induced fluorescence (PF/LIF) instrument; (2) a molybdenum oxide annular denuder sampling/chemiluminescence detection technique; (3) a tungsten oxide denuder sampling/chemiluminescence detection system; (4) a citric-acid-coated denuder sampling/ion chromatographic analysis (CAD/IC) method; and (5) an oxalic-acid-coated filter pack sampling/colorimetric analysis method. It was found that two of the techniques, the PF/LIF and the CAD/IC methods, measured approximately 90 percent of the calculated ammonia added in the spiking tests and agreed very well with each other in the ambient measurements.
    Keywords: INSTRUMENTATION AND PHOTOGRAPHY
    Type: Journal of Geophysical Research (ISSN 0148-0227); 97; D11,; 11
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2011-08-24
    Description: Measurements of peroxyacetyl nitrate (PAN), NO, NO2, HNO3, NOy (total odd nitrogen), and O3 were made in the high-latitude troposphere over North America and Greenland (35 degrees to 82 degrees N) during the Arctic Boundary Layer Expedition (ABLE 3A) (July-August 1988) throughout 0-to 6-km altitudes. These data are analyzed to quantitatively describe the relationships between various odd nitrogen species and assess their significance to global tropospheric chemistry. In the free troposphere, PAN was as much as 25 times more abundant than NOx. PAN to NOx ratio increased with increasing altitude and latitude. PAN was found to be the single most abundant reactive nitrogen species in the free troposphere and constituted a major fraction of NOy, PAN to NOy ratios were about 0.1 in the boundary layer and increased to 0.4 in the free troposphere. A 2-D global photochemical model with C1-C3 hydrocarbon chemistry is used to compare model predictions with measured results. A sizable portion (approximately 50%) of the gaseous reactive nitrogen budget is unaccounted for, and unknown organic nitrates and pernitrates are expected to be present. Model calculations (August 1, 70 degrees N) show that a major fraction of the observed NOx (50 to 70% of median) may find its source in the available PAN reservoir. PAN and the unknown reservoir species may have the potential to control virtually the entire NOx availability of the high latitude troposphere. It is predicted that the summer NOx and O3 mixing ratios in the Arctic/sub-Arctic troposphere would be considerably lower in the absence of the ubiquitous PAN reservoir. Conversely, this PAN reservoir may be responsible for the observed temporal increase in tropospheric O3 at high latitudes.
    Keywords: Exobiology
    Type: Journal of geophysical research (ISSN 0148-0227); Volume 97; D15; 16523-30
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2011-08-24
    Description: Airborne measurements of trace gas and aerosol species were obtained in the lower troposphere (less than 5 km) over the western Atlantic Ocean between 13 deg S and 40 deg N during the August/September 1990 NASA Chemical Instrument Test and Evaluation (CITE 3) experiment. The largest background O3 mixing ratios, averaging 35 and 70 ppbv within the mixed layer (ML) and free troposphere (FT; altitudes greater than 2.4 km), respectively, were found over the tropical South Atlantic. Several competing processes were observed to regulate O3 budgets in this region. Within the ML, rapid photochemical destruction produced a diurnal O3 variation of 8 ppbv and an O3/altitude gradient between the surface and 5 km of almost 10 ppbv (O3)/km. ML O3 concentrations were replenished by atmospheric downwelling which occurred at rates of up to and exceeding 1 cm/s. Ozone values within the subsiding FT air were enriched both by long-range transport of O3 produced photochemically within biomass combustion plumes and the downward propagation of dry, upper tropospheric air masses. Overall, the tropospheric O3 column below 3.3 km averaged 13.5 Dobson units (DU) over the South Atlantic region, which is 8-9 DU higher than observed during CITE 3 ferry flights over the northern tropical Atlantic Ocean or measured by ozonesondes over coastal Brazil during the wet season. An examination of simultaneous dew point and combustion tracer (e.g., CO) measurements suggests that the dry subsiding layers and biomass burning layers make approximately equal contributions to the observed O3 enhancement.
    Keywords: ENVIRONMENT POLLUTION
    Type: Journal of Geophysical Research (ISSN 0148-0227); 98; D12; p. 23,491-23,500
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2011-08-24
    Description: Aircraft measurements of selected trace gas species, aerosols, and meteorological parameters were performed in the lower troposphere off the U.S. east coast during August and September 1989 as part of the NASA Global Tropospheric Experiment (GTE) Chemical Instrumentation Test and Evaluation (CITE 3) expedition. In this paper, we examine these data to assess the impact of continental outflow on western Atlantic O3 and small aerosol budgets. Results show that mixed layer (ML) O3 concentrations and small aerosol number densities (Np) were enhanced by factors of 3 and 6, respectively, within air masses of predominantly continental origin compared with clean maritime background air. These enhancements exhibited a marked altitude dependence, declining rapidly above the ML to the point where only slight to moderate differences in O3 and Np, respectively, were notable above 2.4 km. Within continentally influenced ML's, both O3 and Np were correlated with CO, exhibiting linear regression slopes averaging 0.4 ppbv (O3)/ppbv(CO) for O3 and 7.7 (particles/cc)/ppbv(CO) for Np and indicating a primarily anthropogenic origin for the observed enhancement of these species. Comparisons between profiles in continental and background maritime air masses suggest that photochemical production below 1.4-km altitude adds over 10% to western Atlantic tropospheric column O3 abundance in continental outflow regimes. For aerosols, eastward advection of low-level continental air contributes an average net flux of 2.8 metric tons of submicron (accumulation mode) particles per kilometer of shoreline per day to the western Atlantic troposphere.
    Keywords: ENVIRONMENT POLLUTION
    Type: Journal of Geophysical Research (ISSN 0148-0227); 98; D12; p. 23,477-23,489
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-08-27
    Description: Layers with enhanced concentrations of trace gases intercepted by the NASA Electra aircraft over Alaska during the Arctic Boundary Layer Expedition (ABLE 3A) in July-August 1988 are discussed. Haze layers apparently associated with boreal fires were enriched in hydrocarbons and NO(y), with emission factors corresponding closely to laboratory data for smoldering combustion. It is argued that atmospheric composition was strongly modified by wildfires during several periods of the ABLE 3A mission. The associated enhancement of NO(y) was smaller than observed for most other combustion processes but was nonetheless significant in the context of very low background concentrations. Ozone production in fire plumes was negligible. Ambient O3 was supplied by the stratosphere, with little direct input from midlatitude source during summer. It is argued that NO(y) was supplied about equally by the stratosphere and by wildfires. Hydrocarbons and CO appear to derive from biomass fires and from human activities.
    Keywords: ENVIRONMENT POLLUTION
    Type: Journal of Geophysical Research (ISSN 0148-0227); 97; D15; p. 16,731-16,746.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-08-28
    Description: Aircraft measurements of key reactive nitrogen species (NO, NO2, HNO3, PAN, PPN, NO3(-), NO(y)), C1 to C6 hydrocarbons, acetone, O3, chemical tracers (C2Cl4, CO), and important meteorological parameters were performed over eastern Canada during July to August 1990 at altitudes between 0 and 6 km as part of an Arctic Boundary Layer Expedition (ABLE3B). In the free troposphere, PAN was found to be the single most abundant reactive nitrogen species constituting a major fraction of NO(y) and was significantly more abundant than NO(x) and HNO3. PAN and O3 were well correlated both in their fine and gross structures. Compared to data previously collected in the Arctic/subarctic atmosphere over Alaska (ABLE3A), the lower troposphere (0-4 km) over eastern Canada was found to contain larger reactive nitrogen and anthropogenic tracer concentrations. At higher altitudes (4-6 km) the atmospheric composition was in many ways similar to what was seen over Alaska and supports the view that a large-scale reservoir of PAN (and NO(y)) is present in the upper troposphere over the entire Arctic/subarctic region. The reactive nitrogen budget based on missions conducted from the North Bay site (missions 2-10) showed a small shortfall, whereas the budget for data collected from the Goose Bay operation (missions 11-19) showed essential balance. It is calculated that 15-20 ppt of the observed NO(x) may find its source from the available PAN reservoir. Meteorological considerations as well as relationships between reactive nitrogen and tracer species suggest that the atmosphere over eastern Canada during summer is greatly influenced by forest fires and transported industrial pollution.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: Journal of Geophysical Research (ISSN 0148-0227); 99; D1; p. 1821-1835
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-08-28
    Description: Biomass-burning impacted air masses sampled over central and eastern Canada during the summer of 1990 as part of ABLE 3B contained enhanced mixing ratios of gaseous HNO3, HCOOH, CH3COOH, and what appears to be (COOH)2. These aircraft-based samples were collected from a variety of fresh burning plumes and more aged haze layers from different source regions. Values of the enhancement factor, delta X/delta CO, where X represents an acidic gas, for combustion-impacted air masses sampled both near and farther away from the fires, were relatively uniform. However, comparison of carboxylic acid emission ratios measured in laboratory fires to field plume enhancement factors indicates significant in-plume production of HCOOH. Biomass-burning appears to be an important source of HNO3, HCOOH, and CH3COOH to the troposphere over subarctic Canada.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: Journal of Geophysical Research (ISSN 0148-0227); 99; D1; p. 1721-1737
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...