ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1990-1994  (15)
  • 1
    ISSN: 1749-6632
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Natural Sciences in General
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2005-06-09
    Description: We report tropospheric (altitudes greater than 5 km) observations of CO2, CO, CH4, and light hydrocarbons (C2-C4) over the latitude range from 90 deg N to 23 deg S recorded onboard the NASA DC-8 aircraft during the winter 1992 Second Airborne Arctic Stratospheric Expedition (AASE-II). Mixing ratios for these species exhibited significant north-south gradients with maximum values in subpolar and arctic regions and minima over the southern tropics. At latitudes greater than 40 deg N, the mixing ratios of most species increased significantly over the course of the 3-month measurement period. Also at high northern latitudes, the variations of all relatively long-lived reactive carbon species were linearly correlated with fluctuations of CO2 with CO, CH4, C2H6, C2H2, C3H8, and n-C4H10 exhibiting average enhancement ratios in terms of ppbv(X)/ppmv(CO2) of 13.8, 8.4, 0.21, 0.075, 0.085, and 0.037, respectively.
    Keywords: Environment Pollution
    Type: Airborne Arctic Stratospheric Expedition 2 Air Parcel Trajectories (ISSN 0094-8534); Volume 20; No. 22; 2539-2542; NASA-TM-112699
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-08-24
    Description: The meridional distribution of NO(x) in the lower stratosphere and upper troposphere is inferred form 10 flights of the NASA DC-8 in the northern winter of 1992 along with like distributions of NO(y), NO(x)/NO(y), CO, and C2Cl4. In the lowest few km of the stratosphere there is little vertical gradient in NO(x) over the range of latitiudes measured (40 deg-90 deg N). There is a substantial latitudinal gradient, with 50 pptv above the pole and 120 pptv near 40 deg N. In the uppermost few km of the troposphere, background values range from 30 pptv over the pole to 90 pptv near 40 deg N. On two occasions higher values, up to 140 pptv in the mean, were seen 2-3 km below the tropopause in association with frontal systems. The meridional distributions of CO and C2Cl4 show the same feature, suggesting that the source of the elevated NO(x) is near the earth's system.
    Keywords: GEOPHYSICS
    Type: Geophysical Research Letters (ISSN 0094-8276); 21; 23; p. 2583-2586
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-08-24
    Description: Measurements of PAN and other reactive nitrogen species during the NASA Arctic Boundary Layer Expedition (ABLE 3A) are described, their north-south and east-west gradients in the free troposphere are characterized, and the sources and sinks of PAN and NO(y) are assessed. Large concentrations of PAN and NO(y) are present in the Arctic/sub-Arctic troposphere of the Northern Hemisphere during the summer. Mixing ratios of PAN and a variety of other molecules are more abundant in the free troposphere compared to the boundary layer. Coincident PAN and O3 atmospheric structures suggest that phenomena that define PAN also define the corresponding O3 behavior. Model calculations, correlations between NO(y) and anthropogenic tracers, and the compositions of NO(y) itself suggest that the Arctic/sub-Arctic reactive nitrogen measured during ABLE 3A is predominantly of anthropogenic origin with a minor component from the stratosphere.
    Keywords: ENVIRONMENT POLLUTION
    Type: Journal of Geophysical Research (ISSN 0148-0227); 97; D15; p. 16,511-16,522.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2011-08-24
    Description: We report tropospheric (altitudes greater than 5 km) observations of CO2, CO, CH4, and light hydrocarbons (C2-C4) over the latitude range from 90 deg N to 23 deg S recorded onboard the NASA DC-8 aircraft during the winter 1992 Second Airborne Arctic Stratospheric Expedition (AASE-2). Mixing ratios for these species exhibited significant north-south gradients with maximum values in subpolar and arctic regions and minima over the southern tropics. At latitudes greater than 40 deg N, the mixing ratios of most species increased significantly over the course of the 3-month measurement period. Also at high northern latitudes, the variations of all relatively long-lived reactive carbon species were linearly correlated with fluctuations of CO2 with CO, CH4, C2H6, C2H2, C3H8, and n-C4H10 exhibiting average enhancement ratios in terms of ppbv(X)/ppmb(CO2) of 13.8, 8.4, 0.21, 0.075, 0.085, and 0.037, respectively.
    Keywords: GEOPHYSICS
    Type: Geophysical Research Letters (ISSN 0094-8276); 20; 22; p. 2539-2542
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2011-08-24
    Description: During all eight flights conducted over the equatorial and tropical South Atlantic in the course of the Chemical Instrumentation Test and Evaluation (CITE 3) experiment, we observed haze layers with elevated concentrations of aerosols, O3, CO, and other trace gases related to biomass burning emissions. They occurred at altitudes between 1000 and 5200 m and were usually only some 100-300 m thick. These layers extended horizontally over several 100 km and were marked by the presence of visible brownish haze. Air mass trajectories indicate that these layers originate in the biomass burning regions of Africa and South America and typically have aged at least 10 days since the time of emission. In the haze layers, O3 and CO concentrations up to 90 and 210 ppb were observed, respectively. The two species were highly correlated. The ratio concentrations in plume minus background concentrations of O3/CO is typically in the range 0.2-0.7, much higher than the ratios in the less aged plumes investigated previously in Amazonia. In most cases, aerosol (0.12-3 micrometer diameter) number concentrations were also elevated by up to 400/cu cm in the layers; aerosol enrichments were also strongly correlated with elevated CO levels. Clear correlations between CO and NO(x) enrichments were not apparent due to the age of the plumes, in which most NO(x) would have already reacted away within 1-2 days. Only in some of the plumes could clear correlations between NO(y) and CO be identified; the absence of a general correlation between NO(y) and CO may be due to instrumental limitations and to variable sinks for NO(y). The average enrichment of the ratio concentrations in plume minus background concentrations of NO(y)/CO was quite high, consistent with the efficient production of ozone observed in the plumes. The chemical characteristics of the haze layers, together with remote sensing information and trajectory calculations, suggest that fire emissions (in Africa and/or South America) are the primary source of the haze layer components.
    Keywords: ENVIRONMENT POLLUTION
    Type: Journal of Geophysical Research (ISSN 0148-0227); 99; D6; p. 12,793-12,808
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: The original of NO(X) in the summertime troposphere over subarctic eastern Canada is investigated by photochemical modeling of aircraft and ground-based measurements from the Arctic Boundary Layer Expedition (ABLE 3B). It is found that decomposition of peroxyacetyl nitrate (PAN) can account for most of the NO(X) observed between the surface and 6.2 km altitude (aircraft ceiling). Forest fires represent the principal source of PAN in the region, implying the same origin for NO(X). There is, however, evidence for an unidentified source of NO(X) in occasional air masses subsiding from the upper troposphere. Isoprene emissions from boreal forests maintain high NO(X) concentrations in the continental boundary layer over eastern Canada by scavenging OH and NO3, thus slowing down conversion of NO(X) to HNO3, both in the daytime and at night. This effect is partly compensated by the production of CH3CO3 radicals during isoprene oxidation, which slows down the decomposition of PAN subsiding from the free troposphere. The peroxy radical concentrations estimated from concurrent measurements of NO and NO2 concentrations during ABLE 3B are consistent with values computed from our photochemical model below 4 km, but model values are low at higher altitudes. The discrepancy may reflect either a missing radical source in the model or interferences in the NO2 measurement.
    Keywords: ENVIRONMENT POLLUTION
    Type: Journal of Geophysical Research (ISSN 0148-0227); 99; D8; p. 16,867-16,877
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: Approximately 900 whole air samples were collected and assayed for selected C2-C10 hydrocarbons and seven halocarbons during the 5-week Arctic Boundary Layer Expedition (ABLE) 3B conducted in eastern Canadian wetland areas. In more than half of the 46 vertical profiles flown, enhanced nonmethane hydrocarbon (NMHC) concentrations attributable to plumes from Canadian forest fires were observed. Urban plumes, also enhanced in many NMHCs, were separately identified by their high correlation with elevated levels of perchloroethene. Emission factors relative to ethane were determined for 21 hydrocarbons released from Canadian biomass burning. Using these data for ethane, ethyne, propane, n-butane, and carbon monoxide enhancements from the literature, global emissions of these four NMHCs were estimated. Because of its very short atmospheric lifetime and its below detection limit background mixing ratio, 1,3-butadiene is an excellent indicator of recent combustion. No statistically significant emissions of nitrous oxide, isoprene, or CFC 12 were observed in the biomass-burning plumes encountered during ABLE 3B. The presence of the short-lived biogenically emitted isoprene at altitudes as high as 3000 m implies that mixing within the planetary boundary layer (PBL) was rapid. Although background levels of the longer-lived NMHCs in this Canadian region increase during the fire season, isoprene still dominated local hydroxyl radical photochemistry within the PBL except in the immediate vicinity of active fires. The average biomass-burning emission ratios for hydrocarbons from an active fire sampled within minutes of combustion were, relative to ethane, ethene, 2.45; ethyne 0.57; propane, 0.25; propene, 0.73; propyne, 0.06; n-butane, 0.09; i-butane, 0.01; 1-butene, 0.14; cis-2-butene, 0.02; trans-2-butene, 0.03; i-butylene, 0.07; 1,3-butadiene, 0.12; n-pentane, 0.05; i-pentane, 0.03; 1-pentene, 0.06; n-hexane, 0.05; 1-hexene, 0.07; benzene, 0.37; toluene, 0.16.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: Journal of Geophysical Research (ISSN 0148-0227); 99; D1; p. 1699-1719
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-13
    Description: Elevated concentrations of hydrocarbons, CO, and nitrogen oxides were observed in extensive haze layers over northeastern Canada in the summer of 1990, during ABLE 3B. Halocarbon concentrations remained near background in most layers, indicating a source from biomass wildfires. Elevated concentrations of C2Cl4 provided a sensitive indicator for pollution from urban/industrial sources. Detailed analysis of regional budgets for CO and hydrocarbons indicates that biomass fires accounted for approximately equal to 70% of the input to the subarctic for most hydrocarbons and for acetone and more than 50% for CO. Regional sources for many species (including CO) exceeded chemical sinks during summer, and the boreal region provided a net source to midlatitudes. Interannual variations and long-term trends in atmospheric composition are sensitive to climatic change; a shift to warmer, drier conditions could increase the areas burned and thus the sources of many trace gases.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: Journal of Geophysical Research (ISSN 0148-0227); 99; D1; p. 1887-1897
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-18
    Description: Aircraft measurements of ozone, its key precursors, and a variety of chemical tracers were made in the troposphere of the western and central Pacific in October 1991. These data are presented and analyzed to examine the occurrence of low ozone concentrations in the remote marine boundary layer of the tropical and equatorial Pacific Ocean. The data from these flights out of Guam, covering an area extending from the equator to 20 N and from south of the Philippines to Hawaii, show average O3 concentrations as low as 8-9 ppb (ppb=10(exp-9)v/v) at altitudes of 0.3-0.5 km in the boundary layer. Individual measurements as low as 2-5 ppb were recorded. Low O3 concentrations do not always persist in space and time. High O3, generally associated with the transport of upper tropospheric air, was also encountered in the boundary layer. In practically all cases, O3 increased to values as large as 25-30 ppb within 2 km above the boundary layer top. Steady state model computations are used to suggest that these low O3 concentrations are a result of net photochemical O3 destruction in a low NO environment, sea-surface deposition, and extremely low net entrainment rates (1-2 mm per second) from the free troposphere. Day/night measurements of ethane, propane, gaseous and aerosol Cl suggest that daytime (morning) Cl atom concentrations in the vicinity of 10(exp 5) molecules per cubic centimeter may be present in the marine boundary layer. This Cl atom abundance can be rationalized only if sea salt aerosols can release free chlorine (Cl2) to the gas phase in the presence of sun light (and possibly O3). These Cl atom concentrations, however, are still insufficient and Cl (or Br) chemistry is not likely to be an important cause of the observed low O3.
    Keywords: Environment Pollution
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...