ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 0029-5981
    Keywords: exact dynamic ; stiffness ; arbitrary beams ; natural frequencies ; Engineering ; Numerical Methods and Modeling
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mathematics , Technology
    Notes: In this paper, the exact dynamic stiffness matrix is derived for the transverse vibration of beams whose cross-sectional area and moment of inertia vary in accordance to any two arbitrary real-number powers. This variation represents a very large class of arbitrary varying beams and thus, fills the void currently existing in this area of research. With this approach, most beams can be modelled by just one element, and for beams having abrupt profile changes or with very complex profiles, they can be divided into separate distinct parts, with each of the part modelled by just one element, and then assembled together. The method is exact; however, the accuracy of the results depends only on the solver used to solve the exact frequency equation. To demonstrate the procedure, beams of non-linearly varying circular and elliptical cross-sections, and a combination beam consisting of a linear-tapered section, a uniform section and a non-linearly varying-section are analysed for their natural frequencies. Since there are no known solutions for these structures, comparison with finite element results was made and very good agreement was observed. © 1997 by John Wiley & Sons, Ltd.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-269X
    Keywords: Bouncing ball ; vibrating table ; stability and bifurcation ; period-1 motion
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mathematics
    Notes: Abstract The dynamical behavior of a bouncing ball with a sinusoidally vibrating table is revisited in this paper. Based on the equation of motion of the ball, the mapping for period-1 motion is constructured and thereby allowing the stability and bifurcation conditions to be determined. Comparison with Holmes's solution [1] shows that our range of stable motion is wider, and through numerical simulations, our stability result is observed to be more accurate. The Poincaré mapping sections of the unstable period-1 motion indicate the existence of identical Smale horseshoe structures and fractals. For a better understanding of the stable and chaotic motions, plots of the physical motion of the bouncing ball superimposed on the vibration of the table are presented.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1573-269X
    Keywords: resonant-separatrix web ; stochastic layer ; energy spectrum ; Duffing oscillator
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mathematics
    Notes: Abstract The excitation strength for the onset of a new resonant-separatrix in the stochastic layer of the Duffing oscillator is predicted through the energy change in minimum and maximum energy spectra. The widths of stochastic layers are estimated through the use of the maximum and minimum energy which can be measured experimentally. The energy spectrum approach, rather than the Poincaré mapping section method, is applied to detect the resonant-separatrix web in the stochastic layer, and it is applicable for the onset of resonant layers in nonlinear dynamic systems. The analytical condition for the onset of a new resonant-separatrix in the stochastic layer is also presented. The analytical and numerical predictions are in good agreement.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...