ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    In:  Bull. Seism. Soc. Am., Amsterdam, Elsevier Scientific Publishing Company, vol. 95, no. 1, pp. 18-30, pp. 1390
    Publication Date: 2005
    Keywords: Earthquake hazard ; Attenuation ; Moment tensor ; Seismicity ; Induced seismicity ; USA ; dam ; BSSA
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    In:  Bull. Seism. Soc. Am., Tokyo, Terra Scientific Publishing Company, vol. 95, no. 1, pp. 48-57, pp. B08404, (ISBN: 0534351875, 2nd edition)
    Publication Date: 2005
    Keywords: Earthquake hazard ; Moment tensor ; Inversion ; Seismicity ; Induced seismicity ; dam ; Modelling ; USA ; BSSA
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    In:  Eos Trans. AGU, New York, August, vol. 86, no. 45, pp. 447, pp. 1610, (ISSN: 1340-4202)
    Publication Date: 2005
    Description: On the third day of a recent AGU Chapman Conference, held in Portland, Maine, near the Two Lights fault zones and the Fort Foster brittle zone, conference participants spent the gray June day scrambling over rocky ledges above the crashing surf along the coast of the Atlantic Ocean. With field trip leader Mark Swanson, who with his students has studied the area in detail over the past 20 years, participants examined evidence of ancient earthquakes from about 300 million years ago when these rocks were 8 to 10 kilometers deep. This evidence included pseudotachylytes - glass generated by heating during fault slip at midcrustal depths
    Keywords: Seismology ; Energy (of earthquakes) ; Friction ; Fracture ; Fault zone ; Physical properties of rocks ; Proceedings of a conference ; 7209 ; Seismology: ; Earthquake ; dynamics ; 7215 ; Earthquake ; source ; observations ; 8004 ; Structural ; Geology: ; Dynamics ; and ; mechanics ; of ; faulting
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    In:  Bull. Seism. Soc. Am., New York, August, vol. 95, no. 1, pp. 31-47, pp. 1610, (ISSN: 1340-4202)
    Publication Date: 2005
    Keywords: Earthquake hazard ; Attenuation ; Moment tensor ; Seismicity ; Induced seismicity ; dam ; Modelling ; USA ; BSSA
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    In:  J. Geophys. Res., Tokyo, Terra Scientific Publishing Company, vol. 111, no. B3, pp. 1428-1446, pp. B03312, (ISBN: 0534351875, 2nd edition)
    Publication Date: 2006
    Keywords: Source parameters ; Stress drop ; Physical properties of rocks ; Rock mechanics ; Fracture ; Source ; Northridge ; Landers ; Kobe ; Earthquake ; JGR ; rupture ; mechanism ; source ; parameters ; apparent ; stress ; 1242 ; Geodesy ; and ; Gravity: ; Seismic ; cycle ; related ; deformations ; (6924, ; 7209, ; 7223, ; 7230) ; 1240 ; Satellite ; geodesy: ; results ; (6929, ; 7215, ; 7230, ; 7240)
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2009-09-23
    Description: For one week during September 2007, we deployed a temporary network of field recorders and accelerometers at four sites within two deep, seismically active mines. The ground-motion data, recorded at 200 samples/sec, are well suited to determining source and ground-motion parameters for the mining-induced earthquakes within and adjacent to our network. Four earthquakes with magnitudes close to 2 were recorded with high signal/noise at all four sites. Analysis of seismic moments and peak velocities, in conjunction with the results of laboratory stick-slip friction experiments, were used to estimate source processes that are key to understanding source physics and to assessing underground seismic hazard. The maximum displacements on the rupture surfaces can be estimated from the parameter Formula , where Formula is the peak ground velocity at a given recording site, and R is the hypocentral distance. For each earthquake, the maximum slip and seismic moment can be combined with results from laboratory friction experiments to estimate the maximum slip rate within the rupture zone. Analysis of the four M 2 earthquakes recorded during our deployment and one of special interest recorded by the in-mine seismic network in 2004 revealed maximum slips ranging from 4 to 27 mm and maximum slip rates from 1.1 to 6.3 m/sec. Applying the same analyses to an M 2.1 earthquake within a cluster of repeating earthquakes near the San Andreas Fault Observatory at Depth site, California, yielded similar results for maximum slip and slip rate, 14 mm and 4.0 m/sec.
    Print ISSN: 0037-1106
    Electronic ISSN: 1943-3573
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2005-02-01
    Description: A seismic network was operated in the vicinity of the Trail Mountain mine, central Utah, from the summer of 2000 to the spring of 2001 to investigate the seismic hazard to a local dam from mining-induced events that we expect to be triggered by future coal mining in this area. In support of efforts to develop ground-motion prediction relations for this situation, we inverted ground-motion recordings for six mining-induced events to determine seismic moment tensors and then to estimate moment magnitudes M for comparison with the network coda magnitudes M (sub c) . Six components of the tensor were determined, for an assumed point source, following the inversion method of McGarr (1992a), which uses key measurements of amplitude from obvious features of the displacement waveforms. When the resulting moment tensors were decomposed into implosive and deviatoric components, we found that four of the six events showed a substantial volume reduction, presumably due to coseismic closure of the adjacent mine openings. For these four events, the volume reduction ranges from 27% to 55% of the shear component (fault area times average slip). Radiated seismic energy, computed from attenuation-corrected body-wave spectra, ranged from 2.4X10 (super 5) to 2.4X10 (super 6) J for events with M from 1.3 to 1.8, yielding apparent stresses from 0.02 to 0.06 MPa. The energy released for each event, approximated as the product of volume reduction and overburden stress, when compared with the corresponding seismic energies, revealed seismic efficiencies ranging from 0.5% to 7%. The low apparent stresses are consistent with the shallow focal depths of 0.2 to 0.6 km and rupture in a low stress/low strength regime compared with typical earthquake source regions at midcrustal depths.
    Print ISSN: 0037-1106
    Electronic ISSN: 1943-3573
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2005-02-01
    Description: We describe a multipart study to quantify the potential ground-shaking hazard to Joes Valley Dam, a 58-m-high earthfill dam, posed by mining-induced seismicity (MIS) from future underground coal mining, which could approach as close as approximately 1 km to the dam. To characterize future MIS close to the dam, we studied MIS located approximately 3-7 km from the dam at the Trail Mountain coal mine. A 12-station local seismic network (11 stations above ground, one below, combining eight triaxial accelerometers and varied velocity sensors) was operated in the Trail Mountain area from late 2000 through mid-2001 for the dual purpose of (1) continuously monitoring and locating MIS associated with longwall mining at a depth of 0.5-0.6 km and (2) recording high-quality data to develop ground-motion prediction equations for the shallow MIS. (Ground-motion attenuation relationships and moment-tensor results are reported in companion articles.) Utilizing a data set of 1913 earthquakes (M〈 or =2.2), we describe space-time-magnitude distributions of the observed MIS and source-mechanism information. The MIS was highly correlated with mining activity both in space and time. Most of the better-located events have depths constrained within + or -0.6 km of mine level. For the preponderance (98%) of the 1913 located events, only dilatational P-wave first motions were observed, consistent with other evidence for implosive or collapse-type mechanisms associated with coal mining in this region. We assess a probable maximum magnitude of M 3.9 (84th percentile of a cumulative distribution) for potential MIS close to Joes Valley Dam based on both the worldwide and regional record of coal-mining-related MIS and the local geology and future mining scenarios.
    Print ISSN: 0037-1106
    Electronic ISSN: 1943-3573
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2005-02-01
    Description: To provide a basis for assessing the seismic hazard to the Joes Valley Dam due to future coal mining in the nearby Cottonwood Tract, central Utah, we developed ground-motion prediction relations using data recorded by a seismic network, established and operated by the University of Utah Seismograph Stations. The network was centered on the Trail Mountain coal mine, located adjacent to the Cottonwood Tract. From late 2000 until early 2001, this network recorded numerous mining-induced events with magnitudes as large as 2.17. The ground motion from these events, recorded at hypocentral distances ranging from about 500 m to approximately 10 km, were well suited to developing new ground-motion prediction relations, especially when augmented by data from a M 4.2 earthquake in the Willow Creek mine, about 50 km north of Trail Mountain. Using a two-stage regression analysis, we determined prediction relations for peak acceleration, peak velocity, and pseudovelocity response spectra, at 5% damping, for periods of 0.1, 0.2, 0.5, 1.0, and 2.0 s. To illustrate the potential seismic hazard at the Joes Valley dam, we used these ground-motion relations to predict a peak velocity of 6.8 cm/s due to an earthquake with the probable maximum magnitude of 3.9, at a hypocentral distance of 1 km, recorded at a rock site typical for this region. This result does not take into account the site response at the dam.
    Print ISSN: 0037-1106
    Electronic ISSN: 1943-3573
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2007-10-01
    Description: We test the hypothesis that peak ground velocity (PGV) has an upper bound independent of earthquake magnitude and that this bound is controlled primarily by the strength of the seismogenic crust. The highest PGVs, ranging up to several meters per second, have been measured at sites within a few kilometers of the causative faults. Because the database for near-fault PGV is small, we use earthquake slip models, laboratory experiments, and evidence from a mining-induced earthquake to investigate the factors influencing near-fault PGV and the nature of its scaling. For each earthquake slip model we have calculated the peak slip rates for all subfaults and then chosen the maximum of these rates as an estimate of twice the largest near-fault PGV. Nine slip models for eight earthquakes, with magnitudes ranging from 6.5 to 7.6, yielded maximum peak slip rates ranging from 2.3 to 12 m/sec with a median of 5.9 m/sec. By making several adjustments, PGVs for small earthquakes can be simulated from peak slip rates measured during laboratory stick-slip experiments. First, we adjust the PGV for differences in the state of stress (i.e., the difference between the laboratory loading stresses and those appropriate for faults at seismogenic depths). To do this, we multiply both the slip and the peak slip rate by the ratio of the effective normal stresses acting on fault planes measured at 6.8 km depth at the KTB site, Germany (deepest available in situ stress measurements), to those acting on the laboratory faults. We also adjust the seismic moment by replacing the laboratory fault with a buried circular shear crack whose radius is chosen to match the experimental unloading stiffness. An additional, less important adjustment is needed for experiments run in triaxial loading conditions. With these adjustments, peak slip rates for 10 stick-slip events, with scaled moment magnitudes from -2.9 to 1.0, range from 3.3 to 10.3 m/sec, with a median of 5.4 m/sec. Both the earthquake and laboratory results are consistent with typical maximum peak slip rates averaging between 5 and 6 m/sec or corresponding maximum near-fault PGVs between 2.5 and 3 m/sec at seismogenic depths, independent of magnitude. Our ability to replicate maximum slip rates in the fault zones of earthquakes by adjusting the corresponding laboratory rates using the ratio of effective normal stresses acting on the fault planes suggests that the strength of the seismogenic crust is the important factor limiting the near-fault PGV.
    Print ISSN: 0037-1106
    Electronic ISSN: 1943-3573
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...