ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2011-12-28
    Type: paper
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-12-28
    Type: paper
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-02-16
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , NonPeerReviewed
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-11-22
    Description: Author Posting. © American Geophysical Union, 2008. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 113 (2008): C07023, doi:10.1029/2007JC004644.
    Description: A sequence of dye releases in the Hudson River estuary provide a quantitative assessment of horizontal dispersion in a partially mixed estuary. Dye was released in the bottom boundary layer on 4 separate occasions, with varying tidal phase and spring-neap conditions. The three-dimensional distribution of dye was monitored by two vessels with in situ, profiling fluorometers. The three-dimensional spreading of the dye was estimated by calculating the time derivative of the second moment of the dye in the along-estuary, cross-estuary and vertical directions. The average along-estuary dispersion rate was about 100 m2/s, but maximum rates up to 700 m2/s occurred during ebb tides, and minimum rates occurred during flood. Vertical shear dispersion was the principal mechanism during neap tides, but transverse shear dispersion became more important during springs. Suppression of mixing across the pycnocline limited the vertical extent of the patch in all but the maximum spring-tide conditions, with vertical diffusivities in the pycnocline estimated at 4 × 10−5 m2/s during neaps. The limited vertical extent of the dye patch limited the dispersion of the dye relative to the overall estuarine dispersion rate, which was an order of magnitude greater than that of the dye. This study indicates that the effective dispersion of waterborne material in an estuary depends sensitively on its vertical distribution as well as the phase of the spring-neap cycle.
    Description: This research was supported by National Science Foundation Grant OCE04-52054 (W. Geyer), OCE00-99310 (R. Houghton), and OCE00-95913 (R. Chant).
    Keywords: Dispersion ; Mixing ; Spring-neap variations
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-09-23
    Description: Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and a methodology to quantify all major components of the global carbon budget, including their uncertainties, based on the combination of a range of data, algorithms, statistics and model estimates and their interpretation by a broad scientific community. We discuss changes compared to previous estimates, consistency within and among components, alongside methodology and data limitations. CO2 emissions from fossil-fuel combustion and cement production (EFF) are based on energy statistics, while emissions from land-use change (ELUC), mainly deforestation, are based on combined evidence from land-cover change data, fire activity associated with deforestation, and models. The global atmospheric CO2 concentration is measured directly and its rate of growth (GATM) is computed from the annual changes in concentration. The mean ocean CO2 sink (SOCEAN) is based on observations from the 1990s, while the annual anomalies and trends are estimated with ocean models. The variability in SOCEAN is evaluated for the first time in this budget with data products based on surveys of ocean CO2 measurements. The global residual terrestrial CO2 sink (SLAND) is estimated by the difference of the other terms of the global carbon budget and compared to results of independent dynamic global vegetation models forced by observed climate, CO2 and land cover change (some including nitrogen–carbon interactions). All uncertainties are reported as ±1σ, reflecting the current capacity to characterise the annual estimates of each component of the global carbon budget. For the last decade available (2003–2012), EFF was 8.6 ± 0.4 GtC yr−1, ELUC 0.9 ± 0.5 GtC yr−1, GATM 4.3 ± 0.1 GtC yr−1, SOCEAN 2.5 ± 0.5 GtC yr−1, and SLAND 2.8 ± 0.8 GtC yr−1. For year 2012 alone, EFF grew to 9.7 ± 0.5 GtC yr−1, 2.2% above 2011, reflecting a continued growing trend in these emissions, GATM was 5.1 ± 0.2 GtC yr−1, SOCEAN was 2.9 ± 0.5 GtC yr−1, and assuming an ELUC of 1.0 ± 0.5 GtC yr−1 (based on the 2001–2010 average), SLAND was 2.7 ± 0.9 GtC yr−1. GATM was high in 2012 compared to the 2003–2012 average, almost entirely reflecting the high EFF. The global atmospheric CO2 concentration reached 392.52 ± 0.10 ppm averaged over 2012. We estimate that EFF will increase by 2.1% (1.1–3.1%) to 9.9 ± 0.5 GtC in 2013, 61% above emissions in 1990, based on projections of world gross domestic product and recent changes in the carbon intensity of the economy. With this projection, cumulative emissions of CO2 will reach about 535 ± 55 GtC for 1870–2013, about 70% from EFF (390 ± 20 GtC) and 30% from ELUC (145 ± 50 GtC). This paper also documents any changes in the methods and data sets used in this new carbon budget from previous budgets (Le Quéré et al., 2013). All observations presented here can be downloaded from the Carbon Dioxide Information Analysis Center (doi:10.3334/CDIAC/GCP_2013_V2.3).
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: Incorporating ecological disturbance into biogeochemical models is critical for estimating current and future carbon stocks and fluxes. In particular, anthropogenic disturbances, such as forest conversion and wood harvest, strongly affect forest carbon dynamics within North America. This paper summarizes recent (2000.2008) rates of extraction, including both conversion and harvest, derived from national forest inventories for North America (the United States, Canada, and Mexico). During the 2000s, 6.1 million ha/yr were affected by harvest, another 1.0 million ha/yr were converted to other land uses through gross deforestation, and 0.4 million ha/yr were degraded. Thus about 1.0% of North America fs forests experienced some form of anthropogenic disturbance each year. However, due to harvest recovery, afforestation, and reforestation, the total forest area on the continent has been roughly stable during the decade. On average, about 110 m3 of roundwood volume was extracted per hectare harvested across the continent. Patterns of extraction vary among the three countries, with U.S. and Canadian activity dominated by partial and clear ]cut harvest, respectively, and activity in Mexico dominated by conversion (deforestation) for agriculture. Temporal trends in harvest and clearing may be affected by economic variables, technology, and forest policy decisions. While overall rates of extraction appear fairly stable in all three countries since the 1980s, harvest within the United States has shifted toward the southern United States and away from the Pacific Northwest.
    Keywords: Geophysics
    Type: GSFC.JA.00336.2012 , Journal of Geophysical Research; 116
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2014-04-25
    Description: We present integral field spectroscopy of 10 early-type galaxies in the nearby, low-mass, Fornax cluster, from which we derive spatially resolved stellar kinematics. Based on the morphologies of their stellar velocity maps we classify 2/10 galaxies as slow rotators, with the remaining eight galaxies fast rotators. Supplementing our integral field observations with morphological and kinematic data from the literature, we analyse the ‘kinematic’ type of all 30 galaxies in the Fornax cluster brighter than M K  = –21.5 mag ( M * ~ 6 10 9 M ). Our sample's slow rotator fraction within one virial radius is $7^{+4}_{-6}$  per cent. $13^{+8}_{-6}$  per cent of the early-type galaxies are slow rotators, consistent with the observed fraction in other galaxy aggregates. The fraction of slow rotators in Fornax varies with cluster-centric radius, rising to 16 $^{+11}_{-8}$  per cent of all kinematic types within the central 0.2 virial radii, from 0 per cent in the cluster outskirts. We find that, even in mass-matched samples of slow and fast rotators, slow rotators are found preferentially at higher projected environmental density than fast rotators. This demonstrates that dynamical friction alone cannot be responsible for the differing distributions of slow and fast rotators. For dynamical friction to play a significant role, slow rotators must reside in higher mass sub-haloes than fast rotators and/or form in the centres of groups before being accreted on to the cluster.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2014-09-21
    Description: Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe datasets and a methodology to quantify all major components of the global carbon budget, including their uncertainties, based on the combination of a range of data, algorithms, statistics and model estimates and their interpretation by a broad scientific community. We discuss changes compared to previous estimates, consistency within and among components, alongside methodology and data limitations. CO2 emissions from fossil fuel combustion and cement production (EFF) are based on energy statistics and cement production data, respectively, while emissions from Land-Use Change (ELUC), mainly deforestation, are based on combined evidence from land-cover change data, fire activity associated with deforestation, and models. The global atmospheric CO2 concentration is measured directly and its rate of growth (GATM) is computed from the annual changes in concentration. The mean ocean CO2 sink (SOCEAN) is based on observations from the 1990s, while the annual anomalies and trends are estimated with ocean models. The variability in SOCEAN is evaluated with data products based on surveys of ocean CO2 measurements. The global residual terrestrial CO2 sink (SLAND) is estimated by the difference of the other terms of the global carbon budget and compared to results of independent Dynamic Global Vegetation Models forced by observed climate, CO2 and land cover change (some including nitrogen-carbon interactions). We compare the variability and mean land and ocean fluxes to estimates from three atmospheric inverse methods for three broad latitude bands. All uncertainties are reported as ±1σ, reflecting the current capacity to characterise the annual estimates of each component of the global carbon budget. For the last decade available (2004–2013), EFF was 8.9 ± 0.4 GtC yr−1, ELUC 0.9 ± 0.5 GtC yr−1, GATM 4.3 ± 0.1 GtC yr−1, SOCEAN 2.6 ± 0.5 GtC yr−1, and SLAND 2.9 ± 0.8 GtC yr−1. For year 2013 alone, EFF grew to 9.9 ± 0.5 GtC yr−1, 2.3% above 2012, contining the growth trend in these emissions. ELUC was 0.9 ± 0.5 GtC yr−1, GATM was 5.4 ± 0.2 GtC yr−1, SOCEAN was 2.9 ± 0.5 GtC yr−1 and SLAND was 2.5 ± 0.9 GtC yr−1. GATM was high in 2013 reflecting a steady increase in EFF and smaller and opposite changes between SOCEAN and SLAND compared to the past decade (2004–2013). The global atmospheric CO2 concentration reached 395.31 ± 0.10 ppm averaged over 2013. We estimate that EFF will increase by 2.5% (1.3–3.5%) to 10.1 ± 0.6 GtC in 2014 (37.0 ± 2.2 GtCO2 yr−1), 65% above emissions in 1990, based on projections of World Gross Domestic Product and recent changes in the carbon intensity of the economy. From this projection of EFF and assumed constant ELUC for 2014, cumulative emissions of CO2 will reach about 545 ± 55 GtC (2000 ± 200 GtCO2) for 1870–2014, about 75% from EFF and 25% from ELUC. This paper documents changes in the methods and datasets used in this new carbon budget compared with previous publications of this living dataset (Le Quéré et al., 2013, 2014). All observations presented here can be downloaded from the Carbon Dioxide Information Analysis Center (doi:10.3334/CDIAC/GCP_2014). Italic font highlights significant methodological changes and results compared to the Le Quéré et al. (2014) manuscript that accompanies the previous version of this living data.
    Electronic ISSN: 1866-3591
    Topics: Geosciences
    Published by Copernicus
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2014-03-27
    Description: Reasons for the large uncertainty in land use and land cover change (LULCC) emissions go beyond recognized issues related to the available data on land cover change and the fact that model simulations rely on a simplified and incomplete description of the complexity of biological and LULCC processes. The large range across published LULCC emission estimates is also fundamentally driven by the fact that the net LULCC flux is defined and calculated in different ways across models. We introduce a conceptual framework that allows us to compare the different types of models and simulation setups used to derive land use fluxes. We find that published studies are based on at least nine different definitions of the net LULCC flux. Many multi-model syntheses lack a clear agreement on definition. Our analysis reveals three key processes that are accounted for in different ways: the land use feedback, the loss of additional sink capacity, and legacy (regrowth and decomposition) fluxes. We show that these terminological differences, alone, explain differences between published net LULCC flux estimates that are of the same order as the published estimates themselves. This has consequences for quantifications of the residual terrestrial sink: the spread in estimates caused by terminological differences is conveyed to those of the residual sink. Furthermore, the application of inconsistent definitions of net LULCC flux and residual sink has led to double-counting of fluxes in the past. While the decision to use a specific definition of the net LULCC flux will depend on the scientific application and potential political considerations, our analysis shows that the uncertainty of the net LULCC flux can be substantially reduced when the existing terminological confusion is resolved.
    Print ISSN: 2190-4979
    Electronic ISSN: 2190-4987
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union (EGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2013-01-25
    Description: The source and sinks of carbon dioxide (CO2) and methane (CH4) due to anthropogenic and natural biospheric activities were estimated for the South Asian region (Bangladesh, Bhutan, India, Nepal, Pakistan and Sri Lanka). Flux estimates were based on top-down methods that use inversions of atmospheric data, and bottom-up methods that use field observations, satellite data, and terrestrial ecosystem models. Based on atmospheric CO2 inversions, the net biospheric CO2 flux in South Asia (equivalent to the Net Biome Productivity, NBP) was a sink, estimated at −104 ± 150 Tg C yr−1 during 2007–2008. Based on the bottom-up approach, the net biospheric CO2 flux is estimated to be −191 ± 193 Tg C yr−1 during the period of 2000–2009. This last net flux results from the following flux components: (1) the Net Ecosystem Productivity, NEP (net primary production minus heterotrophic respiration) of −220 ± 186 Tg C yr−1 (2) the annual net carbon flux from land-use change of −14 ± 50 Tg C yr−1, which resulted from a sink of −16 Tg C yr−1 due to the establishment of tree plantations and wood harvest, and a source of 2 Tg C yr−1 due to the expansion of croplands; (3) the riverine export flux from terrestrial ecosystems to the coastal oceans of +42.9 Tg C yr−1; and (4) the net CO2 emission due to biomass burning of +44.1 ± 13.7 Tg C yr−1. Including the emissions from the combustion of fossil fuels of 444 Tg C yr−1 for the 2000s, we estimate a net CO2 land–atmosphere flux of 297 Tg C yr−1. In addition to CO2, a fraction of the sequestered carbon in terrestrial ecosystems is released to the atmosphere as CH4. Based on bottom-up and top-down estimates, and chemistry-transport modeling, we estimate that 37 ± 3.7 Tg C yr−1 were released to atmosphere from South Asia during the 2000s. Taking all CO2 and CH4 fluxes together, our best estimate of the net land–atmosphere CO2-equivalent flux is a net source of 334 Tg C yr−1 for the South Asian region during the 2000s. If CH4 emissions are weighted by radiative forcing of molecular CH4, the total CO2-equivalent flux increases to 1148 Tg C yr−1 suggesting there is great potential of reducing CH4 emissions for stabilizing greenhouse gases concentrations.
    Print ISSN: 1726-4170
    Electronic ISSN: 1726-4189
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union (EGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...