ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2014-06-26
    Description: The impact of climate change on the water resources and hydrology of High Asia is uncertain. This work uses a cryospheric hydrological model to quantify the hydrology of five major rivers in the region and project future water availability. Runoff is expected to increase until at least 2050 due to an increase in precipitation in the upper catchment of four rivers and increased melt entering the fifth river. Nature Climate Change 4 587 doi: 10.1038/nclimate2237
    Print ISSN: 1758-678X
    Electronic ISSN: 1758-6798
    Topics: Geosciences
    Published by Springer Nature
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2012-03-24
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shrestha, Uttam Babu -- New York, N.Y. -- Science. 2012 Mar 23;335(6075):1439-40. doi: 10.1126/science.335.6075.1439-b.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22442460" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2012-11-03
    Description: The Journal of Organic Chemistry DOI: 10.1021/jo301894s
    Print ISSN: 0022-3263
    Electronic ISSN: 1520-6904
    Topics: Chemistry and Pharmacology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2012-02-03
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shrestha, Uttam Babu -- England -- Nature. 2012 Feb 1;482(7383):35. doi: 10.1038/482035b.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22297957" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biodiversity ; *Endangered Species ; Humans ; Medicine, East Asian Traditional/*economics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2013-11-29
    Description: The type I interferon (IFN) response protects cells from viral infection by inducing hundreds of interferon-stimulated genes (ISGs), some of which encode direct antiviral effectors. Recent screening studies have begun to catalogue ISGs with antiviral activity against several RNA and DNA viruses. However, antiviral ISG specificity across multiple distinct classes of viruses remains largely unexplored. Here we used an ectopic expression assay to screen a library of more than 350 human ISGs for effects on 14 viruses representing 7 families and 11 genera. We show that 47 genes inhibit one or more viruses, and 25 genes enhance virus infectivity. Comparative analysis reveals that the screened ISGs target positive-sense single-stranded RNA viruses more effectively than negative-sense single-stranded RNA viruses. Gene clustering highlights the cytosolic DNA sensor cyclic GMP-AMP synthase (cGAS, also known as MB21D1) as a gene whose expression also broadly inhibits several RNA viruses. In vitro, lentiviral delivery of enzymatically active cGAS triggers a STING-dependent, IRF3-mediated antiviral program that functions independently of canonical IFN/STAT1 signalling. In vivo, genetic ablation of murine cGAS reveals its requirement in the antiviral response to two DNA viruses, and an unappreciated contribution to the innate control of an RNA virus. These studies uncover new paradigms for the preferential specificity of IFN-mediated antiviral pathways spanning several virus families.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4077721/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4077721/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schoggins, John W -- MacDuff, Donna A -- Imanaka, Naoko -- Gainey, Maria D -- Shrestha, Bimmi -- Eitson, Jennifer L -- Mar, Katrina B -- Richardson, R Blake -- Ratushny, Alexander V -- Litvak, Vladimir -- Dabelic, Rea -- Manicassamy, Balaji -- Aitchison, John D -- Aderem, Alan -- Elliott, Richard M -- Garcia-Sastre, Adolfo -- Racaniello, Vincent -- Snijder, Eric J -- Yokoyama, Wayne M -- Diamond, Michael S -- Virgin, Herbert W -- Rice, Charles M -- 099220/Wellcome Trust/United Kingdom -- AI057158/AI/NIAID NIH HHS/ -- AI057160/AI/NIAID NIH HHS/ -- AI083025/AI/NIAID NIH HHS/ -- AI091707/AI/NIAID NIH HHS/ -- AI095611/AI/NIAID NIH HHS/ -- AI104972/AI/NIAID NIH HHS/ -- DK095031/DK/NIDDK NIH HHS/ -- G0801822/Medical Research Council/United Kingdom -- GM076547/GM/NIGMS NIH HHS/ -- GM103511/GM/NIGMS NIH HHS/ -- HHSN266200700010C/PHS HHS/ -- HHSN272200900041CU19/CU/CSP VA/ -- K01 DK095031/DK/NIDDK NIH HHS/ -- R00 AI095320/AI/NIAID NIH HHS/ -- R01 AI032972/AI/NIAID NIH HHS/ -- R01 AI091707/AI/NIAID NIH HHS/ -- R01 AI102597/AI/NIAID NIH HHS/ -- R01 AI104972/AI/NIAID NIH HHS/ -- T32 AI005284/AI/NIAID NIH HHS/ -- T32 AR007279/AR/NIAMS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2014 Jan 30;505(7485):691-5. doi: 10.1038/nature12862. Epub 2013 Nov 27.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York 10065, USA [2] Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA (J.W.S.); MRC-University of Glasgow Centre for Virus Research, Glasgow, Scotland G61 1QH, UK (R.M.E.). ; Department of Pathology and Immunology, Washington University School of Medicine, St Louis, Missouri 63110, USA. ; Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York 10065, USA. ; Rheumatology Division, Department of Medicine, and Howard Hughes Medical Institute, Washington University School of Medicine, St Louis, Missouri 63110, USA. ; Infectious Diseases Division, Department of Medicine and Department of Molecular Microbiology, Washington University School of Medicine, St Louis, Missouri 63110, USA. ; Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA. ; 1] Seattle Biomedical Research Institute, Seattle, Washington 98109, USA [2] Institute for Systems Biology, Seattle, Washington 98109, USA. ; Seattle Biomedical Research Institute, Seattle, Washington 98109, USA. ; Department of Microbiology and Immunology, Columbia University, New York, New York 10032, USA. ; Department of Microbiology, University of Chicago, Chicago, Illinois 60637, USA. ; 1] School of Biology, University of St Andrews, St Andrews, Scotland KY16 9ST, UK [2] Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA (J.W.S.); MRC-University of Glasgow Centre for Virus Research, Glasgow, Scotland G61 1QH, UK (R.M.E.). ; 1] Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA [2] Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA [3] Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA. ; Department of Medical Microbiology, Leiden University Medical Center, Leiden 2300 RC, The Netherlands. ; 1] Department of Pathology and Immunology, Washington University School of Medicine, St Louis, Missouri 63110, USA [2] Infectious Diseases Division, Department of Medicine and Department of Molecular Microbiology, Washington University School of Medicine, St Louis, Missouri 63110, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24284630" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cluster Analysis ; DNA Viruses/immunology/pathogenicity ; Flow Cytometry ; Gene Library ; Immunity, Innate/*genetics/*immunology ; Interferon Regulatory Factor-3/immunology/metabolism ; Interferons/*immunology/metabolism ; Membrane Proteins/metabolism ; Mice ; Mice, Knockout ; Nucleotidyltransferases/deficiency/genetics/*immunology/*metabolism ; RNA Viruses/immunology/pathogenicity ; STAT1 Transcription Factor/metabolism ; Substrate Specificity ; Viruses/classification/*immunology/pathogenicity
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
  • 7
    Publication Date: 2012-09-19
    Description: Many wildlife species face imminent extinction because of human impacts, and therefore, a prevailing belief is that some wildlife species, particularly large carnivores and ungulates, cannot coexist with people at fine spatial scales (i.e., cannot regularly use the exact same point locations). This belief provides rationale for various conservation programs,...
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2011-03-02
    Description: The changes in seasonal snow covered area in the Hindu Kush-Himalayan (HKH) region have been examined using Moderate – resolution Imaging Spectroradiometer (MODIS) 8-day standard snow products. The average snow covered area of the HKH region based on satellite data from 2000 to 2010 is 0.76 million km2 which is 18.23% of the total geographical area of the region. The linear trend in annual snow cover from 2000 to 2010 is −1.25±1.13%. This is in consistent with earlier reported decline of the decade from 1990 to 2001. A similar trend for western, central and eastern HKH region is 8.55±1.70%, +1.66% ± 2.26% and 0.82±2.50%, respectively. The snow covered area in spring for HKH region indicates a declining trend (−1.04±0.97%). The amount of annual snowfall is correlated with annual seasonal snow cover for the western Himalaya, indicating that changes in snow cover are primarily due to interannual variations in circulation patterns. Snow cover trends over a decade were also found to vary across seasonally and the region. Snow cover trends for western HKH are positive for all seasons. In central HKH the trend is positive (+15.53±5.69%) in autumn and negative (−03.68±3.01) in winter. In eastern HKH the trend is positive in summer (+3.35±1.62%) and autumn (+7.74±5.84%). The eastern and western region of HKH has an increasing trend of 10% to 12%, while the central region has a declining trend of 12% to 14% in the decade between 2000 and 2010. Snow cover depletion curve plotted for the hydrological year 2000–2001 reveal peaks in the month of February with subsidiary peaks observed in November and December in all three regions of the HKH.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union (EGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2013-01-07
    Description: This paper evaluates the impact of climate change on sediment yield in the Nam Ou basin located in northern Laos. Future climate (temperature and precipitation) from four general circulation models (GCMs) that are found to perform well in the Mekong region and a regional circulation model (PRECIS) are downscaled using a delta change approach. The Soil and Water Assessment Tool (SWAT) is used to assess future changes in sediment flux attributable to climate change. Results indicate up to 3.0 °C shift in seasonal temperature and 27% (decrease) to 41% (increase) in seasonal precipitation. The largest increase in temperature is observed in the dry season while the largest change in precipitation is observed in the wet season. In general, temperature shows increasing trends but changes in precipitation are not unidirectional and vary depending on the greenhouse gas emission scenarios (GHGES), climate models, prediction period and season. The simulation results show that the changes in annual stream discharges are likely to range from a 17% decrease to 66% increase in the future, which will lead to predicted changes in annual sediment yield ranging from a 27% decrease to about 160% increase. Changes in intra-annual (monthly) discharge as well as sediment yield are even greater (−62 to 105% in discharge and −88 to 243% in sediment yield). A higher discharge and sediment flux are expected during the wet seasons, although the highest relative changes are observed during the dry months. The results indicate high uncertainties in the direction and magnitude of changes of discharge as well as sediment yields due to climate change. As the projected climate change impact on sediment varies remarkably between the different climate models, the uncertainty should be taken into account in both sediment management and climate change adaptation.
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union (EGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2012-03-14
    Description: This paper evaluates the impact of climate change on sediment yield in the Nam Ou Basin located in Northern Laos. The Soil and Water Assessment Tool (SWAT) is used to assess future changes in sediment flux attributable to climate change. Future precipitation and temperature series are constructed through a delta change approach. As per the results, in general, temperature as well as precipitation show increasing trends in both scenarios, A2 and B2. However, monthly precipitation shows both increasing and decreasing trends. The simulation results exhibit that the wet and dry seasonal and annual stream discharges are likely to increase (by up to 15, 17 and 14% under scenario A2; and 11, 5 and 10% under scenario B2 respectively) in the future, which will lead to increased wet and dry seasonal and annual sediment yields (by up to 39, 28 and 36% under scenario A2; and 23, 12 and 22% under scenario B2 respectively). A higher discharge and more sediment flux are expected during the wet seasons, although the changes, percentage-wise, are observed to be higher during the dry months. In conclusion, the sediment yield from the Nam Ou Basin is likely to increase with climate change, which strongly suggests the need for basin-wide sediment management strategies in order to reduce the negative impact of this change.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union (EGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...