ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2015-2019  (9)
  • 1
    Publication Date: 2015-09-06
    Description: Ongoing works on full waveform inversion (FWI) are yielding an increasing number of objective functions as alternative to the traditional L2-waveform. These studies aim at designing more robust functions and inversion strategies to reduce the intrinsic dependence of the FWI results on (1) the initial model and (2) the lowest frequency present in field data. In this work, we perform a comparative study of five objective functions in time domain under a common 2-D-acoustic FWI scheme using the Marmousi model as benchmark. In particular, we compare results obtained with L2-based functions that consider the minimization of different wave attributes; the waveform-based, non-integration-method; instantaneous envelope; a modified version of the wrapped instantaneous phase and an improved version of the cross-correlation travel time (CCTT) method; and hybrid strategies combining some of them. We evaluate the robustness of these functionals as a function of their performance with and without low frequencies in the data and the presence of random white Gaussian noise. Our results reveal promising strategies to invert noisy data with limited low-frequency content (≥4 Hz), which is the single strategy using the instantaneous phase objective function followed by the hybrid strategies using the instantaneous phase or CCTT as initial models, in particular the combinations [I. Phase + Waveform], [CCTT + Waveform] and [CCTT + I. Phase].
    Keywords: Marine Geosciences and Applied Geophysics
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-11-15
    Description: We present results of marine MT acquisition in the Alboran sea that also incorporates previously acquired land MT from southern Spain into our analysis. The marine data show complex MT response functions with strong distortion due to seafloor topography and the coastline, but inclusion of high resolution topography and bathymetry and a seismically defined sediment unit into a 3D inversion model has allowed us to image the structure in the underlying mantle. The resulting resistivity model is broadly consistent with a geodynamic scenario that includes subduction of an eastward trending plate beneath Gibraltar, which plunges nearly vertically beneath the Alboran. Our model contains three primary features of interest: a resistive body beneath the central Alboran, which extends to a depth of ∼150 km. At this depth, the mantle resistivity decreases to values of ∼100 Ohm-m, slightly higher than those seen in typical asthenosphere at the same depth. This transition suggests a change in slab properties with depth, perhaps reflecting a change in the nature of the seafloor subducted in the past. Two conductive features in our model suggest the presence of fluids released by the subducting slab or a small amount of partial melt in the upper mantle (or both). Of these, the one in the center of the Alboran basin, in the uppermost-mantle (20-30km depth) beneath Neogene volcanics and west of the termination of the Nekkor Fault, is consistent with geochemical models, which infer highly thinned lithosphere and shallow melting in order to explain the petrology of seafloor volcanics. This article is protected by copyright. All rights reserved.
    Electronic ISSN: 1525-2027
    Topics: Chemistry and Pharmacology , Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2016-03-07
    Description: Water and carbon are transferred from the ocean to the mantle in a process that alters mantle peridotite to create serpentinite and supports diverse ecosystems. Serpentinized mantle rocks are found beneath the sea floor at slow-to ultraslow-spreading mid-ocean ridges and are thought to be present at about half the world's rifted margins. Serpentinite is also inferred to exist in the downgoing plate at subduction zones, where it may trigger arc magmatism or hydrate the deep Earth. Water is thought to reach the mantle via active faults. Here we show that serpentinization at the rifted continental margin offshore from western Spain was probably initiated when the whole crust cooled to become brittle and deformation was focused along large normal faults. We use seismic tomography to image the three-dimensional distribution of serpentinization in the mantle and find that the local volume of serpentinite beneath thinned, brittle crust is related to the amount of displacement along each fault. This implies that sea water reaches the mantle only when the faults are active. We estimate the fluid flux along the faults and find it is comparable to that inferred for mid-ocean ridge hydrothermal systems. We conclude that brittle processes in the crust may ultimately control the global flux of sea water into the Earth. © 2016 Macmillan Publishers Limited. All rights reserved.
    Print ISSN: 1752-0894
    Electronic ISSN: 1752-0908
    Topics: Geosciences
    Published by Springer Nature
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-12-01
    Description: We present results of marine MT acquisition in the Alboran sea that also incorporates previously acquired land MT from southern Spain into our analysis. The marine data show complex MT response functions with strong distortion due to seafloor topography and the coastline, but inclusion of high resolution topography and bathymetry and a seismically defined sediment unit into a 3-D inversion model has allowed us to image the structure in the underlying mantle. The resulting resistivity model is broadly consistent with a geodynamic scenario that includes subduction of an eastward trending plate beneath Gibraltar, which plunges nearly vertically beneath the Alboran. Our model contains three primary features of interest: a resistive body beneath the central Alboran, which extends to a depth of ∼150 km. At this depth, the mantle resistivity decreases to values of ∼100 Ohm-m, slightly higher than those seen in typical asthenosphere at the same depth. This transition suggests a change in slab properties with depth, perhaps reflecting a change in the nature of the seafloor subducted in the past. Two conductive features in our model suggest the presence of fluids released by the subducting slab or a small amount of partial melt in the upper mantle (or both). Of these, the one in the center of the Alboran basin, in the uppermost-mantle (20-30 km depth) beneath Neogene volcanics and west of the termination of the Nekkor Fault, is consistent with geochemical models, which infer highly thinned lithosphere and shallow melting in order to explain the petrology of seafloor volcanics. © 2015. American Geophysical Union. All Rights Reserved.
    Electronic ISSN: 1525-2027
    Topics: Chemistry and Pharmacology , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
  • 6
    Publication Date: 2017-11-01
    Print ISSN: 2169-9275
    Electronic ISSN: 2169-9291
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2018-02-01
    Description: Crustal structure provides the key to understand the interplay of magmatism and tectonism, while oceanic crust is constructed at Mid-Ocean Ridges (MORs). At slow spreading rates, magmatic processes dominate central areas of MOR segments, whereas segment ends are highly tectonized. The TAMMAR segment at the Mid-Atlantic Ridge (MAR) between 21°25′N and 22°N is a magmatically active segment. At ~4.5 Ma this segment started to propagate south, causing the termination of the transform fault at 21°40′N. This stopped long-lived detachment faulting and caused the migration of the ridge offset to the south. Here a segment center with a high magmatic budget has replaced a transform fault region with limited magma supply. We present results from seismic refraction profiles that mapped the crustal structure across the ridge crest of the TAMMAR segment. Seismic data yield crustal structure changes at the segment center as a function of melt supply. Seismic Layer 3 underwent profound changes in thickness and became rapidly thicker ~5 Ma. This correlates with the observed “Bull's Eye” gravimetric anomaly in that region. Our observations support a temporal change from thick lithosphere with oceanic core complex formation and transform faulting to thin lithosphere with focused mantle upwelling and segment growth. Temporal changes in crustal construction are connected to variations in the underlying mantle. We propose that there is a link between the neighboring segments at a larger scale within the asthenosphere, to form a long, highly magmatically active macrosegment, here called the TAMMAR-Kane Macrosegment. ©2018. American Geophysical Union. All Rights Reserved.
    Print ISSN: 2169-9313
    Electronic ISSN: 2169-9356
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2015-08-02
    Description: Geophysical data from the MEDOC experiment across the Northern Tyrrhenian backarc basin has mapped a failed rift during backarc extension of cratonic Variscan lithosphere. In contrast, data across the Central Tyrrhenian have revealed the presence of magmatic accretion followed by mantle exhumation after continental breakup. Here we analyse the MEDOC transect E–F, which extends from Sardinia to the Campania margin at 40.5°N, to define the distribution of geological domains in the transition from the complex Central Tyrrhenian to the extended continental crust of the Northern Tyrrhenian. The crust and uppermost mantle structure along this ~400-km-long transect have been investigated based on wide-angle seismic data, gravity modelling and multichannel seismic reflection imaging. The P -wave tomographic model together with a P -wave-velocity-derived density model and the multichannel seismic images reveal seven different domains along this transect, in contrast to the simpler structure to the south and north. The stretched continental crust under Sardinia margin abuts the magmatic crust of Cornaglia Terrace, where accretion likely occurred during backarc extension. Eastwards, around Secchi seamount, a second segment of thinned continental crust (7–8 km) is observed. Two short segments of magmatically modified continental crust are separated by the ~5-km-wide segment of the Vavilov basin possibly made of exhumed mantle rocks. The eastern segment of the 40.5°N transect E–F is characterized by continental crust extending from mainland Italy towards the Campania margin. Ground truthing and prior geophysical information obtained north and south of transect E–F was integrated in this study to map the spatial distribution of basement domains in the Central Tyrrhenian basin. The northward transition of crustal domains depicts a complex 3-D structure represented by abrupt spatial changes of magmatic and non-magmatic crustal domains. These observations imply rapid variations of magmatic activity difficult to reconcile with current models of extension of continental lithosphere essentially 2-D over long distances.
    Keywords: Geodynamics and Tectonics
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2015-08-15
    Description: We present a new 3-D traveltime tomography code (TOMO3D) for the modelling of active-source seismic data that uses the arrival times of both refracted and reflected seismic phases to derive the velocity distribution and the geometry of reflecting boundaries in the subsurface. This code is based on its popular 2-D version TOMO2D from which it inherited the methods to solve the forward and inverse problems. The traveltime calculations are done using a hybrid ray-tracing technique combining the graph and bending methods. The LSQR algorithm is used to perform the iterative regularized inversion to improve the initial velocity and depth models. In order to cope with an increased computational demand due to the incorporation of the third dimension, the forward problem solver, which takes most of the run time (~90 per cent in the test presented here), has been parallelized with a combination of multi-processing and message passing interface standards. This parallelization distributes the ray-tracing and traveltime calculations among available computational resources. The code's performance is illustrated with a realistic synthetic example, including a checkerboard anomaly and two reflectors, which simulates the geometry of a subduction zone. The code is designed to invert for a single reflector at a time. A data-driven layer-stripping strategy is proposed for cases involving multiple reflectors, and it is tested for the successive inversion of the two reflectors. Layers are bound by consecutive reflectors, and an initial velocity model for each inversion step incorporates the results from previous steps. This strategy poses simpler inversion problems at each step, allowing the recovery of strong velocity discontinuities that would otherwise be smoothened.
    Keywords: Marine Geosciences and Applied Geophysics
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...