ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2015-2019  (2)
Collection
Years
  • 2015-2019  (2)
Year
  • 1
    Publication Date: 2015-10-30
    Description: Fluid model has been applied to perform a comparative study of hydrogen bromide (HBr)/He and HBr/Ar capacitively coupled plasma discharges that are being used for anisotropic etching process. This model has been used to identify the most dominant species in HBr based plasmas. Our simulation results show that the neutral species like H and Br, which are the key player in chemical etching, have bell shape distribution, while ions like HBr + , Br + , which play a dominant rule in the physical etching, have double humped distribution and show peaks near electrodes. It was found that the dilution of HBr by Ar and/or He results in an increase in electron density and electron temperature, which results in more ionization and dissociation and hence higher densities of neutral and charged species can be achieved. The ratio of positive ion flux to the neutral flux increases with an increase in additive gas fraction. Compare to HBr/He plasma, the HBr/Ar plasma shows a maximum change in the ion density and flux and hence the etching rate can be considered in the ion-assisted and in the ion-flux etch regime in HBr/Ar discharge. The densities of electron and other dominant species in HBr/Ar plasma are higher than those of HBr/He plasma. The densities and fluxes of the active neutrals and positive ions for etching and subsequently chemical etching versus physical sputtering in HBr/Ar and HBr/He plasmas discharge can be controlled by tuning gas mixture ratio and the desire etching can be achieved.
    Print ISSN: 1070-664X
    Electronic ISSN: 1089-7674
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-04-13
    Description: In this study, a fluid model has been used to study the effect of gas mixing ratio and pressure on the density distribution of important etchant species, i.e., hydrogen (H), bromine (Br), Br + , and HBr + in HBr/He plasma. Our simulation results show that the densities of active etchant species H, Br, and HBr + increase with the increase in pressure as well as the HBr fraction in HBr/He mixture. On the contrary, the density of Br + decreases with the increase in He percentage in HBr/He mixture and with the increase in the pressure. Time averaged reaction rates (of the reactions involved in the production and consumption of these species) have been calculated to study the effect of these reactions on the density distribution of these species. The spatial distribution of these species is explained with the help of the time averaged reaction rates. Important reactions have been identified that contribute considerably to the production and consumption of these active species. The code has been optimized by identifying 26 reactions (out of 40 reactions which contribute in the production and consumption of these species) that have insignificant effect on the densities of H, Br, Br + , and HBr + . This shows that out of 40 reactions, only 14 reactions can be used to calculate the density and distribution of the important species in HBr/He plasma discharge.
    Print ISSN: 1070-664X
    Electronic ISSN: 1089-7674
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...