ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2020-2023  (4)
  • 2022  (4)
Collection
Language
Years
Year
  • 1
    Publication Date: 2022-03-24
    Description: Glacial isostatic adjustment is largely governed by the rheological properties of the Earth's mantle. Large mass redistributions in the ocean–cryosphere system and the subsequent response of the viscoelastic Earth have led to dramatic sea level changes in the past. This process is ongoing, and in order to understand and predict current and future sea level changes, the knowledge of mantle properties such as viscosity is essential. In this study, we present a method to obtain estimates of mantle viscosities by the assimilation of relative sea level rates of change into a viscoelastic model of the lithosphere and mantle. We set up a particle filter with probabilistic resampling. In an identical twin experiment, we show that mantle viscosities can be recovered in a glacial isostatic adjustment model of a simple three-layer Earth structure consisting of an elastic lithosphere and two mantle layers of different viscosity. We investigate the ensemble behaviour on different parameters in the following three set-ups: (1) global observations data set since last glacial maximum with different ensemble initialisations and observation uncertainties, (2) regional observations from Fennoscandia or Laurentide/Greenland only, and (3) limiting the observation period to 10 ka until the present. We show that the recovery is successful in all cases if the target parameter values are properly sampled by the initial ensemble probability distribution. This even includes cases in which the target viscosity values are located far in the tail of the initial ensemble probability distribution. Experiments show that the method is successful if enough near-field observations are available. This makes it work best for a period after substantial deglaciation until the present when the number of sea level indicators is relatively high.
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-11
    Description: We use a fully coupled hydro-thermal model (TH) to quantify changes in the pore pressure and temperature distribution following the Last Glacial Maximum (LGM) in the intracontinental basins in Central and Northern Europe. We demonstrate that even without considering a direct mechanical coupling from the visco-elastic lithosphere rebound, the system is, at present-day, in a state of hydrogeologic and thermal disequilibrium as a result of the past ice sheet dynamics. We find that the local geology exerts an additional control on the subsurface response to imposed glacial loading, as evidenced by a contrasting thermal and pore pressure configuration in time and space. Highest rates of pore pressure dissipation are restricted to crustal domains that underwent substantial glacial loading, while the majority of the sedimentary sub-basins show a prominent signature of hydraulic disequilibrium (overpressure) at present. Groundwater-driven convective cooling and heating during the advance and retreat of the ice cap occurred mainly within sedimentary rocks, domains where thermal equilibration is ongoing. The spatial correlation between modeled pore pressure dissipation rates and postglacial uplift rates is indicative of a complex and transient hydrogeological system structurally connected to the viscous tail of the ongoing isostatic adjustment after the LGM, with important implications for assessing the long-term mechanical stability of this intraplate setting.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-11-17
    Description: Ocean tide loading (OTL) and ocean tide dynamics (OTD) are known to be affected by Earth's internal structures, with the latter being affected by the self-attraction and loading (SAL) potential. Combining the 3D earth models Lyon and LITHO1.0, we construct a hybrid model to quantify the coupled effect of sediments, oceanic and continental lithosphere, and anelastic upper mantle on OTL and OTD. Compared to PREM, this more realistic 3D model produces significantly larger vertical OTL displacement by up to 3.9, 2.6, and 0.1 mm for the M2, K1, and Mf OTL, respectively. Moreover, it shows a smaller vector difference of 0.1 mm and a smaller amplitude difference of 0.2 mm than PREM with OTL observations at 663 Global Navigation Satellite System stations, a confirmation of the cumulative effect due to these earth features. On the other hand, we find a resonant impact of wider extent and larger magnitude on OTD, especially for the M2 and K1 tides. Specifically, this impact is concentrated in the ranges 0–6 mm and 0–1.5 mm for M2 and K1, respectively, which is considerably larger than the impact on SAL (mostly in the ranges 0–2 mm and 0–1.0 mm, respectively). Since the effect on vertical displacement is at a similar level compared to the accuracy of modern data-constrained ocean tide models that require correction of the geocentric tide by loading induced vertical displacements, we regard its consideration to be potentially beneficial in OTD modeling.
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-08-25
    Description: The elastic response of solid earth to glacier and ice sheet melting, the most important consequences of climate change, is a contemporaneous uplift. Here, we use interferometric synthetic aperture radar (InSAR) measurements to detect crustal deformation and mass loss near the Helheim glacier, one of the largest glaciers in southeastern Greenland. The InSAR time series of Sentinel-1 data between April 2016 and July 2020 suggest that there is a maximum cumulative displacement of ~6 cm in the line of sight (LOS) direction from the satellite to the ground near Helheim. We use an exponentially decreasing model of the thinning rate, which assumes that the mass loss starts at the lower-elevation terminal region of the glacier and continues to the higher-elevation interior. A linear inversion of the derived crustal uplift in the vicinity of bedrock using this model for surface loading in an elastic half-space suggests a mass loss of 8.33 Gt/year, which agrees with the results from other studies.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...