ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2020-2023  (2)
  • 1980-1984
  • 2021  (2)
Collection
Years
Year
  • 1
    Publication Date: 2022-10-27
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Zeigler, S. L., Gutierrez, B. T., Hecht, A., Plant, N. G., & Sturdivant, E. J. Piping plovers demonstrate regional differences in nesting habitat selection patterns along the U. S. Atlantic coast. Ecosphere, 12(3), (2021): e03418, https://doi.org/10.1002/ecs2.3418.
    Description: Habitat studies that encompass a large portion of a species’ geographic distribution can explain characteristics that are either consistent or variable, further informing inference from more localized studies and improving management successes throughout the range. We identified landscape characteristics at Piping Plover nests at 21 sites distributed from Massachusetts to North Carolina and compared habitat selection patterns among the three designated U.S. recovery units (New England, New York–New Jersey, and Southern). Geomorphic setting, substrate type, and vegetation type and density were determined in situ at 928 Piping Plover nests (hereafter, used resource units) and 641 random points (available resource units). Elevation, beach width, Euclidean distance to ocean shoreline, and least-cost path distance to low-energy shorelines with moist substrates (commonly used as foraging habitat) were associated with used and available resource units using remotely sensed spatial data. We evaluated multivariate differences in habitat selection patterns by comparing recovery unit-specific Bayesian networks. We then further explored individual variables that drove disparities among Bayesian networks using resource selection ratios for categorical variables and Welch’s unequal variances t-tests for continuous variables. We found that relationships among variables and their connections to habitat selection were similar among recovery units, as seen in commonalities in Bayesian network structures. Furthermore, nesting Piping Plovers consistently selected mixed sand and shell, gravel, or cobble substrates as well as areas with sparse or no vegetation, irrespective of recovery unit. However, we observed significant differences among recovery units in the elevations, distances to ocean, and distances to low-energy shorelines of used resource units. Birds also exhibited increased selectivity for overwash habitats and for areas with access to low-energy shorelines along a latitudinal gradient from north to south. These results have important implications for conservation and management, including assessment of shoreline stabilization and habitat restoration planning as well as forecasting effects of climate change.
    Description: Funding for this work was provided by the North Atlantic Landscape Conservation Cooperative and U.S. Fish and Wildlife Service through a U.S. Geological Survey Mendenhall Fellowship to Zeigler. All other funding was through the U.S. Geological Survey (Zeigler, Gutierrez, Plant, and Sturdivant) and the U.S. Fish and Wildlife Service (Hecht). Zeigler, Plant, and Hecht conceived and designed the study and secured funding.
    Keywords: Barrier islands ; Bayesian network ; Charadrius melodus ; Coastal ecosystems ; Early successional habitat ; Habitat selection ; Piping Plovers
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-11-03
    Description: 〈jats:p〉Abstract. Aerosol particles are a complex component of the atmospheric system which influence climate directly by interacting with solar radiation, and indirectly by contributing to cloud formation. The variety of their sources, as well as the multiple transformations they may undergo during their transport (including wet and dry deposition), result in significant spatial and temporal variability of their properties. Documenting this variability is essential to provide a proper representation of aerosols and cloud condensation nuclei (CCN) in climate models. Using measurements conducted in 2016 or 2017 at 62 ground-based stations around the world, this study provides the most up-to-date picture of the spatial distribution of particle number concentration (Ntot) and number size distribution (PNSD, from 39 sites). A sensitivity study was first performed to assess the impact of data availability on Ntot's annual and seasonal statistics, as well as on the analysis of its diel cycle. Thresholds of 50 % and 60 % were set at the seasonal and annual scale, respectively, for the study of the corresponding statistics, and a slightly higher coverage (75 %) was required to document the diel cycle. Although some observations are common to a majority of sites, the variety of environments characterizing these stations made it possible to highlight contrasting findings, which, among other factors, seem to be significantly related to the level of anthropogenic influence. The concentrations measured at polar sites are the lowest (∼ 102 cm−3) and show a clear seasonality, which is also visible in the shape of the PNSD, while diel cycles are in general less evident, due notably to the absence of a regular day–night cycle in some seasons. In contrast, the concentrations characteristic of urban environments are the highest (∼ 103–104 cm−3) and do not show pronounced seasonal variations, whereas diel cycles tend to be very regular over the year at these stations. The remaining sites, including mountain and non-urban continental and coastal stations, do not exhibit as obvious common behaviour as polar and urban sites and display, on average, intermediate Ntot (∼ 102–103 cm−3). Particle concentrations measured at mountain sites, however, are generally lower compared to nearby lowland sites, and tend to exhibit somewhat more pronounced seasonal variations as a likely result of the strong impact of the atmospheric boundary layer (ABL) influence in connection with the topography of the sites. ABL dynamics also likely contribute to the diel cycle of Ntot observed at these stations. Based on available PNSD measurements, CCN-sized particles (considered here as either >50 nm or >100 nm) can represent from a few percent to almost all of Ntot, corresponding to seasonal medians on the order of ∼ 10 to 1000 cm−3, with seasonal patterns and a hierarchy of the site types broadly similar to those observed for Ntot. Overall, this work illustrates the importance of in situ measurements, in particular for the study of aerosol physical properties, and thus strongly supports the development of a broad global network of near surface observatories to increase and homogenize the spatial coverage of the measurements, and guarantee as well data availability and quality. The results of this study also provide a valuable, freely available and easy to use support for model comparison and validation, with the ultimate goal of contributing to improvement of the representation of aerosol–cloud interactions in models, and, therefore, of the evaluation of the impact of aerosol particles on climate. 〈/jats:p〉
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , NonPeerReviewed
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...