ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (6)
  • Wiley  (6)
  • GEOMAR
  • 2015-2019  (6)
  • 2019  (6)
Collection
  • Other Sources  (6)
Years
  • 2015-2019  (6)
Year
  • 1
    facet.materialart.
    Unknown
    AGU (American Geophysical Union) | Wiley
    In:  Geophysical Research Letters, 46 (1). pp. 365-373.
    Publication Date: 2022-01-31
    Description: We investigate the role of the tropics, the stratosphere, and atmosphere‐ocean coupling for seasonal forecasts of strong, potentially damaging, Northern Hemisphere extratropical winter wind storm frequencies. This is done by means of relaxation experiments with the European Centre for Medium‐Range Weather Forecasts model, which allow us to prescribe perfect forecasts for specific parts of the coupled atmosphere‐ocean system. We find that perfect predictions of the Northern Hemisphere stratosphere significantly enhance winter storm predictive skill between eastern Greenland and Northern Europe. Correct seasonal predictions of the occurrence of stratospheric sudden warmings play a decisive role. The importance of correctly predicting the tropics and of two‐way atmosphere‐ocean coupling, both for forecasting stratospheric sudden warming risk and, correspondingly, severe winter storm frequency, is noted.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Royal Meteorological Society | Wiley
    In:  Atmospheric Science Letters, 20 (5). e900.
    Publication Date: 2022-01-31
    Description: Recent studies using reanalysis data and complex models suggest that the Tropics influence midlatitude blocking. Here, the influence of tropical precipitation anomalies is investigated further using a dry dynamical model driven by specified diabatic heating anomalies. The model uses a quasi‐realistic setup based on idealized orography and an idealized representation of the land‐ocean thermal contrast. Results concerning the El Niño Southern Oscillation and the Madden‐Julian Oscillation are mostly consistent with previous studies and emphasize the importance of tropical dynamics for driving the variability of blocking at midlatitudes. It is also shown that a common bias in models of the Coupled Model Intercomparison Project Phase 5 (CMIP5), namely, excessive tropical precipitation, leads to an underestimation of midlatitude blocking in our model, also a common bias in the CMIP5 models. The strongest blocking anomalies associated with the tropical precipitation bias are found over Europe, where the underestimation of blocking in CMIP5 models is also particularly strong.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-01-31
    Description: Five initialization and ensemble generation methods are investigated with respect to their impact on the prediction skill of the German decadal prediction system "Mittelfristige Klimaprognose" (MiKlip). Among the tested methods, three tackle aspects of model‐consistent initialization using the ensemble Kalman filter (EnKF), the filtered anomaly initialization (FAI) and the initialization method by partially coupled spin‐up (MODINI). The remaining two methods alter the ensemble generation: the ensemble dispersion filter (EDF) corrects each ensemble member with the ensemble mean during model integration. And the bred vectors (BV) perturb the climate state using the fastest growing modes. The new methods are compared against the latest MiKlip system in the low‐resolution configuration (Preop‐LR), which uses lagging the climate state by a few days for ensemble generation and nudging toward ocean and atmosphere reanalyses for initialization. Results show that the tested methods provide an added value for the prediction skill as compared to Preop‐LR in that they improve prediction skill over the eastern and central Pacific and different regions in the North Atlantic Ocean. In this respect, the EnKF and FAI show the most distinct improvements over Preop‐LR for surface temperatures and upper ocean heat content, followed by the BV, the EDF and MODINI. However, no single method exists that is superior to the others with respect to all metrics considered. In particular, all methods affect the Atlantic Meridional Overturning Circulation in different ways, both with respect to the basin‐wide long‐term mean and variability, and with respect to the temporal evolution at the 26° N latitude.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    Wiley | AGU (American Geophysical Union)
    In:  Journal of Geophysical Research: Oceans, 124 (4). pp. 2374-2403.
    Publication Date: 2022-01-31
    Description: The Bjerknes feedback is the dominant positive feedback in the equatorial ocean basins. To examine the seasonality, symmetry, and stationarity of the Pacific and Atlantic Bjerknes feedbacks we decompose them into three feedback elements that relate thermocline depth, sea surface temperature (SST), and western basin wind stress variability to each other. We partition feedback elements into composites associated with positive or negative anomalies. Using robust regression, we diagnose the strength of each composite. For the recent period 1993‐2012, composites of the Pacific Bjerknes feedback elements agree well with previous work. Positive composites are generally stronger than negative composites, and all feedback elements are weakest in late boreal spring. In the Atlantic, differences between positive and negative composites are less consistent across feedback elements. Specifically, wind variability seems to play a less important role in shaping atmosphere‐ocean coupling in the Atlantic when compared to the Pacific. However, a clear seasonality emerges: Feedback elements are generally strong in boreal summer and, for the negative composites, again in boreal winter. The Atlantic Bjerknes feedback is dominated by subsurface‐surface coupling. Applying our analysis to overlapping 25‐year periods for 1958‐2009 shows that the strengths of feedback elements in both ocean basins vary on decadal time scales. While the overall asymmetry of the Pacific Bjerknes feedback is robust, the strength and symmetry of Atlantic feedback elements vary considerably between decades. Our results indicate that the Atlantic Bjerknes feedback is non‐stationary on decadal time scales.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-01-31
    Description: Due to strong mean state‐biases most coupled models are unable to simulate equatorial Atlantic variability. Here, we use the Kiel Climate Model to assess the impact of bias reduction on the seasonal prediction of equatorial Atlantic sea surface temperature (SST). We compare a standard experiment (STD) with an experiment that employs surface heat flux correction to reduce the SST bias (FLX) and, in addition, apply a correction for initial errors in SST. Initial conditions for both experiments are generated in partially coupled mode, and seasonal hindcasts are initialized at the beginning of February, May, August and November for 1981–2012. Surface heat flux correction generally improves hindcast skill. Hindcasts initialized in February have the least skill, even though the model bias is not particularly strong at that time of year. In contrast, hindcasts initialized in May achieve the highest skill. We argue this is because of the emergence of a closed Bjerknes feedback loop in boreal summer in FLX that is a feature of observations but is missing in STD.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    AGU (American Geophysical Union) | Wiley
    In:  Journal of Geophysical Research: Oceans, 124 (6). pp. 4044-4057.
    Publication Date: 2022-01-31
    Description: Interannual variability of Antarctic Intermediate Water (AAIW) in the tropical North Atlantic is investigated using the GECCO2 ocean state estimate and Argo data. AAIW salinity variability near the western boundary is highly correlated with the transport along the western boundary on interannual timescales. Northward propagating anomalies are associated with the western boundary transport variability that, to some extent, is related to the large‐scale wind stress curl forcing by means of the Sverdrup balance. AAIW anomalies also propagate westward with the speed of baroclinic Rossby waves, indicating that the displacement of the meridional salinity gradient by westward propagation of baroclinic Rossby waves plays a role in the variability of AAIW characteristics. Slower eastward spreading of AAIW anomalies is identified on decadal timescales likely associated with the advection of salinity anomalies by weak eastward current bands. Understanding the observed interannual and decadal variability of AAIW salinity is important to properly interpret salinity changes reported in response to changes in the hydrological cycle.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...