ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2015-2019  (3)
  • 2019  (3)
Collection
Years
  • 2015-2019  (3)
Year
  • 1
    Publication Date: 2019-05-20
    Description: Temperature and ozone changes in the upper troposphere and lower stratosphere (UTLS) are important components of climate change. In this paper, variability and trends of temperature and ozone in the UTLS are investigated for the period 2002–2017 using high-quality, high vertical resolution Global Navigation Satellite System radio occultation (GNSS RO) data and improved merged satellite data sets. As part of the Stratosphere-troposphere Processes And their Role in Climate (SPARC) Reanalysis Intercomparison Project (S-RIP), three reanalysis data sets, including the ERA-I, MERRA2 and the recently released ERA5, are evaluated for their representation of temperature and ozone in the UTLS. The recent temperature and ozone trends are updated with a multiple linear regression (MLR) method and related to sea surface temperature (SST) changes based on model simulations made with NCAR's Whole Atmosphere Community Climate Model (WACCM). All reanalysis temperatures show good agreement with the GNSS RO measurements in both absolute value and annual cycle. Interannual variations in temperature related to Quasi-Biennial Oscillation (QBO) and the El Niño–Southern Oscillation (ENSO) processes are well represented by all reanalyses. However, evident biases can be seen in reanalyses for the linear trends of temperature since they are affected by discontinuities in assimilated observations and methods. Such biases can be corrected and the estimated trends can be significantly improved. ERA5 is significantly improved compared to ERA-I and shows the best agreement with the GNSS RO temperature. The MLR results indicate a significant warming of 0.2–0.3 K per decade in most areas of the troposphere, with a stronger increase of 0.4–0.5 K per decade at midlatitudes of both hemispheres. In contrast, the stratospheric temperature decreases at a rate of 0.1–0.3 K per decade, which is most significant in the Southern Hemisphere (SH). Positive temperature trends of 0.1–0.3 K per decade are seen in the tropical lower stratosphere (100–50 hPa). Negative trends of ozone are found in the Northern Hemisphere (NH) at 150–50 hPa, while positive trends are evident in the tropical lower stratosphere. Asymmetric trends of ozone can be found in the midlatitudes of two hemispheres in the middle stratosphere, with significant ozone decrease in the NH and increase in ozone in the SH. Large biases exist in reanalyses, and it is still challenging to do trend analysis based on reanalysis ozone data. According to single-factor-controlled model simulations with WACCM, the temperature increase in the troposphere and the ozone decrease in the NH stratosphere are mainly connected to the increase in SST and subsequent changes of atmospheric circulations. Both the increase in SSTs and the decrease in ozone in the NH contribute to the temperature decrease in the NH stratosphere. The increase in temperature in the lower stratospheric tropics may be related to an increase in ozone in that region, while warming SSTs contribute to a cooling in that area.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-08-19
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-01-31
    Description: Solar signals in the atmosphere and the ocean, especially in tropopause temperatures and lower stratospheric water vapour are investigated using recent observational and reanalyses data sets for the period from 1958 through 2013. Previous observational and modeling studies demonstrated solar influences in the lower stratosphere resembling a positive Northern Annular Mode due to the top-down mechanism involving enhanced solar UV radiation in the stratosphere during solar maxima and dynamical amplification mechanisms in the atmosphere. We found that these stratospheric changes might propagate down to the troposphere and become zonally asymmetric with characteristic pressure and wind pattern over the North Atlantic and North Pacific. Such changes in tropospheric circulation are related to anomalous positive SST anomalies in the central Pacific which resemble an El Niño Modoki event. We show for the first time with ocean reanalysis data that these SST anomalies are amplified by a positive feedback through oceanic subsurface currents and heat transport in the equatorial Pacific. Anomalous warm SSTs in the equatorial central Pacific change the zonal SST gradient and lead to anomalous westerly winds and currents in the western Pacific and easterly winds and currents in the eastern Pacific. This indicates a convergence and less upwelling and therefore enhances the positive SST anomalies in the equatorial central Pacific. Such a positive feedback results in a peak of El Niño Modoki events about 2 years after the solar maximum. These solar-induced signals in the ocean in turn modify the circulation and convection in the troposphere, resulting in lagged solar signals of anomalous high tropopause heights and negative anomalies in tropopause temperatures as well as in lower stratospheric water vapour over the equatorial Pacific which are in agreement with a time evolving solar-induced El Niño Modoki-like SST pattern. We demonstrate a solar modulation of intrinsic decadal climate variability over the Pacific which is amplified by positive feedbacks between the ocean and the atmosphere.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...