ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Wiley  (4)
  • Tübingen: Mohr
  • Kiel: Institut für Weltwirtschaft (IfW)
  • ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften, Leibniz-Informationszentrum Wirtschaft Kiel, Hamburg
  • 2015-2019  (4)
  • 2019  (4)
Collection
Publisher
Years
  • 2015-2019  (4)
Year
  • 1
    Publication Date: 2019
    Description: Abstract Two Bio‐Argo floats measured the concentration of chlorophyll‐a, the backscattering coefficient, the fluorescence of humic‐like dissolved organic matter, dissolved oxygen, and temperature and salinity in the northern and central basins of the South China Sea for over 2 years. Temporal evolutions of bio‐optical properties were analyzed at surface, subsurface, and in the whole water column, respectively. It was found that (1) The seasonal variability of the surface chlorophyll‐a was highly controlled by photoacclimation, especially in the central basin; (2) backscattering in the upper 150 m was nearly constant, exhibiting no distinct seasonality; (3) with vertical mixing, particles from the deep chlorophyll maxima were entrained into the mixed layer resulting in enhanced surface chlorophyll during the early winter. This phenomenon may mislead a study based on satellite data which is likely to interpret it as blooming rather than a redistribution of phytoplankton within the water column; (4) analysis of a winter bloom and an anticyclonic eddy reveal that physical entrainment and biological photoacclimation modulated the vertical distributions of chlorophyll‐a and particles and potentially also changes of phytoplankton community composition; and (5) fluorescent dissolved organic matter was found to be highly coupled to phytoplankton dynamics in both basins, with a maximum (after removing the contribution of physical convective mixing) located at the depth of chlorophyll‐a subsurface maximum.
    Print ISSN: 2169-9275
    Electronic ISSN: 2169-9291
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019
    Description: Abstract Biogeochemical Argo floats, profiling to 2,000‐m depth, are being deployed throughout the Southern Ocean by the Southern Ocean Carbon and Climate Observations and Modeling program (SOCCOM). The goal is 200 floats by 2020, to provide the first full set of annual cycles of carbon, oxygen, nitrate, and optical properties across multiple oceanographic regimes. Building from no prior coverage to a sparse array, deployments are based on prior knowledge of water mass properties, mean frontal locations, mean circulation and eddy variability, winds, air‐sea heat/freshwater/carbon exchange, prior Argo trajectories, and float simulations in the Southern Ocean State Estimate and Hybrid Coordinate Ocean Model (HYCOM). Twelve floats deployed from the 2014–2015 Polarstern cruise from South Africa to Antarctica are used as a test case to evaluate the deployment strategy adopted for SOCCOM's 20 deployment cruises and 126 floats to date. After several years, these floats continue to represent the deployment zones targeted in advance: (1) Weddell Gyre sea ice zone, observing the Antarctic Slope Front, and a decadally‐rare polynya over Maud Rise; (2) Antarctic Circumpolar Current (ACC) including the topographically steered Southern Zone chimney where upwelling carbon/nutrient‐rich deep waters produce surprisingly large carbon dioxide outgassing; (3) Subantarctic and Subtropical zones between the ACC and Africa; and (4) Cape Basin. Argo floats and eddy‐resolving HYCOM simulations were the best predictors of individual SOCCOM float pathways, with uncertainty after 2 years of order 1,000 km in the sea ice zone and more than double that in and north of the ACC.
    Print ISSN: 2169-9275
    Electronic ISSN: 2169-9291
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019
    Description: Abstract The spring bloom in the Southern Ocean is the rapid‐growth phase of the seasonal cycle in phytoplankton. Many previous studies have characterized the spring bloom using chlorophyll estimates from satellite ocean color observations. Assumptions regarding the chlorophyll‐to‐carbon ratio within phytoplankton and vertical structure of biogeochemical variables lead to uncertainty in satellite‐based estimates of phytoplankton carbon biomass. Here, we revisit the characterizations of the bloom using optical backscatter from biogeochemical floats deployed by the Southern Ocean Carbon and Climate Observations and Modelling (SOCCOM) and Southern Ocean and Climate Field Studies with Innovative Tools (SOCLIM) projects. In particular, by providing a three‐dimensional view of the seasonal cycle, we are able to identify basin‐wide bloom characteristics corresponding to physical features; biomass is low in Ekman downwelling regions north of the Antarctic Circumpolar Current (ACC) region, and high within and south of the ACC.
    Print ISSN: 2169-9275
    Electronic ISSN: 2169-9291
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-01-01
    Print ISSN: 0162-5098
    Electronic ISSN: 2325-3606
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...