ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2015-2019  (1,545)
  • 2005-2009
  • 1990-1994  (1,616)
  • 2019  (1,545)
  • 1992  (853)
  • 1991  (763)
Collection
Language
Years
  • 2015-2019  (1,545)
  • 2005-2009
  • 1990-1994  (1,616)
Year
  • 1
    Monograph available for loan
    Monograph available for loan
    Berlin [u.a.] : Springer
    Call number: M 99.0570
    Type of Medium: Monograph available for loan
    Pages: xvi, 577 S.
    Edition: 2nd ed.
    ISBN: 3540974296
    Series Statement: Springer series in statistics
    Classification:
    C.1.6.
    Location: Upper compact magazine
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Monograph available for loan
    Monograph available for loan
    New York [u.a.] : Springer
    Call number: M 91.0922
    Type of Medium: Monograph available for loan
    Pages: ix, 104 S. + 3 Disketten
    ISBN: 0387974822
    Language: English
    Location: Upper compact magazine
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Call number: 93-0150
    Pages: 54 S. : graph. Darst.
    ISBN: 0520097793
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Monograph available for loan
    Monograph available for loan
    New York, N.Y. : Van Nostrand Reinhold
    Call number: M 95.0192
    Type of Medium: Monograph available for loan
    Pages: XII, 385 S. : graph. Darst.
    ISBN: 0442001738
    Classification:
    C.2.6.
    Language: English
    Location: Upper compact magazine
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    AIChE Journal 37 (1991), S. 313-322 
    ISSN: 0001-1541
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Transient temperature profiles in multilayer slabs are predicted, by simultaneously solving Maxwell's equations with the heat conduction equation, using Galerkin finite elements. It is assumed that the medium is homogeneous and has temperature-dependent dielectric and thermal properties. The method is illustrated with applications involving the heating of food and polymers with microwaves. The temperature dependence of dielectric properties affects the heating appreciably, as is shown by comparison with a constant property model.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    AIChE Journal 38 (1992), S. 1577-1592 
    ISSN: 0001-1541
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Transient temperature profiles for long rods of lossy dielectric materials with thermally-dependent dielectric properties exposed to uniform plane waves are obtained. Maxwell's equation and the heat equation are simultaneously solved using the finite element method to predict the power absorbed and the resulting temperature rise in samples of square and circular cross-section. Following the method introduced recently, we derive an exact radiation boundary condition which is independent of the rod cross-section. For a cylindrical sample, the boundary condition is imposed on the cylinder itself. For a square rod, the boundary condition is imposed on a cylinder containing the rod. The temperature dependence of dielectric properties and sample dimensions appreciably influence heating patterns. For square samples, the edges focus radiation, causing preferential heating at the edges. This effect is pronounced for larger samples. In addition, the incident wave polarization influences the heating of the rod. For waves where the electric field is polarized along the long axis of the sample (TMz polarization) the power absorbed is higher than when the electric field is perpendicular to the axis (TEz polarization). A case involving runaway heating is also investigated.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    AIChE Journal 37 (1991), S. 1789-1800 
    ISSN: 0001-1541
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The finite element method was used to model microwave thawing of pure-water and 0.1-M NaCl cylinders. The electromagnetic field was described by Maxwell's equations with temperature-dependent dielectric properties, while the heat equation, coupled with the Stefan and Robin conditions, was used to describe the thawing process. An additional equation for the frozen volume fraction was used, when necessary, to account for the presence of a mushy region. Two microwave frequencies, 915 MHz and 2,450 MHz, were examined and the microwave radiation was assumed to be radially isotropic and normal to the surface of the cylinder. Results show that a two-phase mushy region may exist, and an additional thawing front may appear at the center of the cylinder. Salt cylinders have a higher dielectric loss than pure-water cylinders and therefore thaw more quickly. Internal resonance occurs when the wavelength of the radiation is a harmonic of the cylinder radius. Resonance increases power deposition and expedites the thawing process. The onset of resonance alters thawing times and complicates the development of heuristic rules for microwave thawing.
    Additional Material: 12 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
  • 9
    Publication Date: 2019
    Description: Abstract The width of the tropical Hadley circulation (HC) has garnered intense interest in recent decades, owing to the emerging evidence for its expansion in observations and models and to the anticipated impacts on surface climate in its descending branches. To better clarify the causes and impacts of tropical widening, this work generalizes the zonal mean HC to the regional level by defining meridional overturning cells (RC) using the horizontally divergent wind. The edges of the RC are more closely connected to surface hydroclimate than more traditional metrics of regional tropical width (such as the sea level pressure ridge) or even than the zonal mean HC. Simulations reveal a robust weakening of the RC in response to greenhouse gas increases, along with a widening of the RC in some regions. For example, simulated widening of the zonal mean HC in the Southern Hemisphere appears to arise in large part from regional overturning anomalies over the Eastern Pacific, where there is no clear RC. Unforced interannual variability in the position of the zonal mean HC edge is associated with a more general regional widening. These distinct regional signatures suggest that the RCs may be well suited for the attribution of observed circulation trends. The spatial pattern of regional meridional overturning trends in reanalyses corresponds more closely to the pattern associated with unforced interannual variability than to the pattern associated with CO2 forcing, suggesting a large contribution of natural variability to the recent observed tropical widening trends.
    Print ISSN: 2169-897X
    Electronic ISSN: 2169-8996
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019
    Description: The Antarctic Centennial Oscillation (ACO) is a paleoclimate temperature cycle that originates in the Southern Hemisphere, is the presumptive evolutionary precursor of the contemporary Antarctic Oscillation (AAO), and teleconnects to the Northern Hemisphere to influence global temperature. In this study we investigate the internal climate dynamics of the ACO over the last 21 millennia using stable water isotopes frozen in ice cores from 11 Antarctic drill sites as temperature proxies. Spectral and time series analyses reveal that ACOs occurred at all 11 sites over all time periods evaluated, suggesting that the ACO encompasses all of Antarctica. From the Last Glacial Maximum through the Last Glacial Termination (LGT), ACO cycles propagated on a multicentennial time scale from the East Antarctic coastline clockwise around Antarctica in the streamline of the Antarctic Circumpolar Current (ACC). The velocity of teleconnection (VT) is correlated with the geophysical characteristics of drill sites, including distance from the ocean and temperature. During the LGT, the VT to coastal sites doubled while the VT to inland sites decreased fourfold, correlated with increasing solar insolation at 65°N. These results implicate two interdependent mechanisms of teleconnection, oceanic and atmospheric, and suggest possible physical mechanisms for each. During the warmer Holocene, ACOs arrived synchronously at all drill sites examined, suggesting that the VT increased with temperature. Backward extrapolation of ACO propagation direction and velocity places its estimated geographic origin in the Southern Ocean east of Antarctica, in the region of the strongest sustained surface wind stress over any body of ocean water on Earth. ACO period is correlated with all major cycle parameters except cycle symmetry, consistent with a forced, undamped oscillation in which the driving energy affects all major cycle metrics. Cycle period and symmetry are not discernibly different for the ACO and AAO over the same time periods, suggesting that they are the same climate cycle. We postulate that the ACO/AAO is generated by relaxation oscillation of Westerly Wind velocity forced by the equator-to-pole temperature gradient and propagated regionally by identified air-sea-ice interactions.
    Electronic ISSN: 2225-1154
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Geosciences
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...