ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Lunar and Planetary Science and Exploration  (1)
  • 2015-2019  (1)
  • 2010-2014
  • 1965-1969
  • 2019  (1)
Collection
Keywords
  • Lunar and Planetary Science and Exploration  (1)
Years
  • 2015-2019  (1)
  • 2010-2014
  • 1965-1969
Year
  • 1
    Publication Date: 2019-07-30
    Description: Characterizing the history of aqueous activity at the martian surface has been an objective of the Mars Exploration Rovers (MER) and the Mars Science Laboratory (MSL). Although the geologic context of the three landing sites are different, comparisons across the datasets can provide greater insight than using data from one mission alone. The Alpha Particle X-ray Spectrometer (APXS) is common to all three rovers (Spirit at Gusev crater, Opportunity at Meridiani Planum, and Curiosity at Gale crater) and provides a consistent basis for these comparisons. Soil and Dust: Fine grained basaltic soils and dust are remarkably uniform in chemical composition across multiple landing sites. These similarities in the concentrations of major, minor, and a few trace elements (Fig. 1) are indicative of planet-wide consistency in the composition of source materials for the soils. S and Cl vary by a factor of two in the soil and dust, but there is no clear association with any bulk cation (e.g., no correlation between S and total Ca, Mg, or Fe in soils). These volatile elements, however, are clearly associated with the nanophase-ferric iron component in the soil established by Mssbauer spectroscopy [1,2]. S and Cl likely originated as acidic species from volcanic out-gassing and subsequently coalesced on dust and sand grain surfaces, possibly with an affinity towards Fe3+ sites. Importantly, given the mobility of S and Cl in aqueous exposures, soil samples maintaining the typical molar S/Cl ratio of ~3.7:1 indicate minimal interactions with liquid water after the addition of S and Cl. In contrast to this well-established baseline, soil samples have been discovered at all three landing sites with atypical S/Cl ratios (e.g., subsurface soils), indicative of a more complex aqueous history.
    Keywords: Lunar and Planetary Science and Exploration
    Type: JSC-E-DAA-TN70395 , International Conference on Mars; Jul 22, 2019 - Jul 25, 2019; Pasadena, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...