ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2015-2019  (2)
  • 2015  (2)
Collection
Publisher
Years
  • 2015-2019  (2)
Year
  • 1
    Publication Date: 2015-05-19
    Description: There is a large discrepancy between the size of volcanic ash particles measured on the ground at least 500 km from their source volcano (known as cryptotephra) and those reported by satellite remote sensing (effective radius of 0.5–9 μm; 95% of particles 〈 17 μm diameter). Here we present new results from the fields of tephrochronology (a dating technique based on volcanic ash layers), dispersion modelling and satellite remote sensing in an attempt to understand why. A literature review and measurements of prehistoric and recent eruptions were used to characterise the size range of cryptotephra grains. Icelandic cryptotephra deposited in NW Europe has lognormal particle size distributions (PSDs) with median lengths of 20–70 μm (geometric standard deviation: 1.40–1.66; 95th percentile length: 42–126 μm). Grain-size range estimates from the literature are similar. We modelled the settling of volcanic ash using measured fall velocities of ash particles, a release height typical of moderate Icelandic eruptions (10 km), and a wind speed typical for NW Europe (10 m s−1), to show that an ash cloud can transport particles up to 80 μm diameter up to 850 km in 24 h. Thus, even moderately sized Icelandic eruptions can be expected to deposit cryptotephra on mainland Europe. Using simulated satellite infrared data for dispersion-model-derived ash clouds, we demonstrate a systematic bias towards small grain sizes in retrievals of volcanic ash clouds that contain large proportions of cryptotephra-sized grains. As the median radius of the simulated PSD increases, fewer ash-containing pixels are correctly identified. Where retrievals are made of simulated clouds with mass median radii larger than ~ 10 μm, the mean retrieved reff plateaus at around 9 μm. Assuming Mie scattering by dense spheres when interpreting satellite infrared brightness temperature difference (BTD) data puts an upper limit on retrieved particle sizes. If larger, irregularly shaped ash grains can also produce a BTD effect, this will result in further underestimation of grain size, e.g. in coarse ash clouds close to a volcano.
    Print ISSN: 1867-1381
    Electronic ISSN: 1867-8548
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-01-06
    Description: There is a large discrepancy between the size of volcanic ash particles measured from deposits on the ground (known as cryptotephra; 20–125 μm in length) and those reported by satellite remote sensing (effective radii of 0.5–9 μm; 95% of particles 〈 17 μm diameter). We use results from the fields of tephrochronology (a dating technique based on volcanic ash layers), dispersion modelling and satellite remote sensing in an attempt to understand from where it arises. We show that Icelandic cryptotephras deposited in NW Europe have lognormal particle size distributions (PSDs) with median lengths of 20–70 μm (geometric standard deviation: 1.40–1.66; 95th percentile length: 42–126 microns). This is consistent with semi-quantitative grainsize range estimates from the literature. Using measured fall velocities of ash particles, a release height typical of moderate Icelandic eruptions (10 km) and a wind speed typical for NW Europe (10 m s−1), we find that an ash cloud can transport particles 〈 80 μm diameter up to 850 km in 24 h, so that even moderately sized Icelandic eruptions can deposit cryptotephra on mainland Europe. The proportion of cryptotephra in airborne clouds is unknown. We used simulated satellite data of dispersion-model-derived ash clouds to investigate the effect of PSD on satellite retrievals and show that as the median radius of the input PSD increases, fewer ash-containing pixels are correctly identified. Where retrievals are made of simulated clouds with mass median radii larger than ~ 10 μm, the mean retrieved reff plateaus at around 9 μm. This is a systematic bias in the retrieval algorithm that would cause the grainsize of distal clouds containing significant cryptotephra to be underestimated. This cannot explain discrepancies in coarser proximal clouds, however, which may be because the complex physics of scattering by highly irregularly-shaped grains is inadequately represented by assuming that particles are dense spheres.
    Electronic ISSN: 1867-8610
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...