ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2015-2019  (3)
  • 2015  (3)
Collection
Years
  • 2015-2019  (3)
Year
  • 1
    Publication Date: 2015-09-17
    Description: Aims The relationship between biodiversity and ecosystem functioning has intrigued ecologists for several decades, but the effect of loss of a dominant species on community structure and functioning along a nutrient gradient remains poorly understood. The aim of this paper was to test the effect of a dominant species on community structure and function by conducting a species removal experiment along a fertilization gradient. Methods We removed the population of a dominant species ( Elymus nutans ) in a long-term fertilization field in an alpine meadow on the Tibetan Plateau, China. Univariate general linear models were used to evaluate the effects of fertilization and removal on above-ground vegetation characteristics, including photosynthetically active radiation in the understory, species richness, Shannon–Weiner diversity index, Simpson’s dominance index, above-ground biomass (including different functional groups) and seedling richness and density. Important Findings Results revealed that after two plant growing seasons, there was no significant effect of the removal of a dominant species on species richness and diversity of the remaining vegetation, but the biomass of forbs and seedling recruitment were significantly increased indicative of the potential for long-term effects. Moreover, removal had a large effect at high fertilization levels, but little effect when fertilization levels were low. Our studies indicated that community response to loss of a dominant species was mainly dependent on resource availability and the remaining functional group identities. We also found seedling recruitment was usually more sensitive to the influence of competition of dominant species than the established vegetation in the short term.
    Print ISSN: 1752-993X
    Electronic ISSN: 1752-9921
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-12-02
    Print ISSN: 1045-6740
    Electronic ISSN: 1099-1530
    Topics: Geography , Geosciences
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-05-21
    Description: In topographically complex watersheds, landscape position and vegetation heterogeneity can alter the soil water regime through both lateral and vertical redistribution, respectively. These alterations of soil moisture may have significant impacts on the spatial heterogeneity of biogeochemical cycles throughout the watershed. To evaluate how landscape position and vegetation heterogeneity affect soil CO2 efflux (FSOIL), we conducted observations across the Weimer Run watershed (373 ha), located near Davis, West Virginia, for three growing seasons with varying precipitation. An apparent soil temperature threshold of 11 °C for FSOIL at 12 cm depth was observed in our data, where FSOIL rates greatly increase in variance above this threshold. We therefore focus our analyses of FSOIL on instances in which soil temperature values were above this threshold. Vegetation had the greatest effect on FSOIL rates, with plots beneath shrubs at all elevations, for all years, showing the greatest mean rates of FSOIL (6.07 μmol CO2 m−2 s−1) compared to plots beneath closed-forest canopy (4.69 μmol CO2 m−2 s−1) and plots located in open, forest gap (4.09 μmol CO2 m−2 s−1) plots. During periods of high soil moisture, we find that CO2 efflux rates are constrained, and that maximum efflux rates occur during periods of average to below-average soil water availability. While vegetation was the variable most related to FSOIL, there is also strong interannual variability in fluxes determined by the interaction of annual precipitation and topography. These findings add to the current theoretical constructs related to the interactions of moisture and vegetation in biogeochemical cycles within topographically complex watersheds.
    Print ISSN: 1726-4170
    Electronic ISSN: 1726-4189
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...