ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Association for the Advancement of Science (AAAS)  (2)
  • American Institute of Physics (AIP)  (2)
  • Blackwell Science Ltd
  • Oxford University Press
  • Amsterdam : Elsevier
  • 2015-2019  (4)
  • 2000-2004
  • 2015  (4)
  • 1
    Publication Date: 2015-09-22
    Description: High performance improvement (+88% in peak G m and 〉30% in linear and saturation region drain currents) was observed for N-MOSFETs with Oxygen-Inserted (OI) Si channel. From TCAD analysis of the C-V measurement data, the improvement was confirmed to be due to electron mobility enhancement of the OI Si channel (+75% at N inv  = 4.0 × 10 12  cm −2 and +25% at N inv  = 8.0 × 10 12  cm −2 ). Raman and high-resolution Rutherford backscattering measurements confirmed that negligible strain is induced in the OI Si layer, and hence, it cannot be used to explain the origin of mobility improvement. Poisson-Schrödinger based quantum mechanical simulation was performed, taking into account phonon, surface roughness and Coulomb scatterings. The OI layer was modeled as a “quasi barrier” region with reference to the Si conduction band edge to confine inversion electrons. Simulation explains the measured electron mobility enhancement as the confinement effect of inversion electrons while the formation of an super-steep retrograde well doping profile in the channel (as a result of dopant diffusion blocking effect accompanied by introduction of the OI layer) also contributes 50%–60% of the mobility improvement.
    Print ISSN: 0003-6951
    Electronic ISSN: 1077-3118
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-08-22
    Description: Although disturbances such as fire and native insects can contribute to natural dynamics of forest health, exceptional droughts, directly and in combination with other disturbance factors, are pushing some temperate forests beyond thresholds of sustainability. Interactions from increasing temperatures, drought, native insects and pathogens, and uncharacteristically severe wildfire are resulting in forest mortality beyond the levels of 20th-century experience. Additional anthropogenic stressors, such as atmospheric pollution and invasive species, further weaken trees in some regions. Although continuing climate change will likely drive many areas of temperate forest toward large-scale transformations, management actions can help ease transitions and minimize losses of socially valued ecosystem services.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Millar, Constance I -- Stephenson, Nathan L -- New York, N.Y. -- Science. 2015 Aug 21;349(6250):823-6. doi: 10.1126/science.aaa9933.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉U.S. Department of Agriculture Forest Service, Pacific Southwest Research Station, Albany, CA 94710, USA. cmillar@fs.fed.us. ; U.S. Geological Survey, Western Ecological Research Center, Three Rivers, CA 93271, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26293954" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Climate Change ; *Disasters ; Droughts ; Environmental Restoration and Remediation ; Fires ; *Forests ; Insects ; *Trees
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-09-19
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Karkas, Markus D -- Matsuura, Bryan S -- Stephenson, Corey R J -- New York, N.Y. -- Science. 2015 Sep 18;349(6254):1285-6. doi: 10.1126/science.aad0193.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA. ; Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA. crjsteph@umich.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26383937" target="_blank"〉PubMed〈/a〉
    Keywords: Catalysis ; Free Radicals/*chemistry ; Light ; Oxidation-Reduction ; *Photochemical Processes
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-11-07
    Description: Murray's law states that the volumetric flow rate is proportional to the cube of the radius in a cylindrical channel optimized to require the minimum work to drive and maintain the fluid. However, application of this principle to the biomimetic design of micro/nano fabricated networks requires optimization of channels with arbitrary cross-sectional shape (not just circular) and smaller than is valid for Murray's original assumptions. We present a generalized law for symmetric branching that (a) is valid for any cross-sectional shape, providing that the shape is constant through the network; (b) is valid for slip flow and plug flow occurring at very small scales; and (c) is valid for networks with a constant depth, which is often a requirement for lab-on-a-chip fabrication procedures. By considering limits of the generalized law, we show that the optimum daughter-parent area ratio Γ, for symmetric branching into N daughter channels of any constant cross-sectional shape, is Γ = N − 2 / 3 for large-scale channels, and Γ = N − 4 / 5 for channels with a characteristic length scale much smaller than the slip length. Our analytical results are verified by comparison with a numerical optimization of a two-level network model based on flow rate data obtained from a variety of sources, including Navier-Stokes slip calculations, kinetic theory data, and stochastic particle simulations.
    Print ISSN: 0021-8979
    Electronic ISSN: 1089-7550
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...