ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Copernicus  (2)
  • 2010-2014  (2)
  • 2014  (2)
Collection
Publisher
  • Copernicus  (2)
Years
  • 2010-2014  (2)
Year
  • 1
    Publication Date: 2014-08-06
    Description: This regional study quantifies the CO2 exchange at the air–water interface along the land-ocean aquatic continuum (LOAC) of the North East American coast, from streams to the shelf break. Our analysis explicitly accounts for spatial and seasonal variability in the CO2 fluxes. The yearly integrated budget reveals the gradual change in the intensity of the CO2 exchange at the air–water interface, from a strong source towards the atmosphere in streams and rivers (3.0 ± 0.5 Tg C yr−1) and estuaries (0.8 ± 0.5 Tg C yr−1) to a net sink in continental shelf waters (−1.7 ± 0.3 Tg C yr−1). Significant differences in flux intensity and their seasonal response to climate variations is observed between the North and South sections of the study area, both in rivers and coastal waters. Ice cover, snow melt and estuarine surface area are identified as important control factors of the observed spatio-temporal variability in CO2 exchange along the LOAC.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-07-04
    Description: Reactive transport models (RTMs) are powerful tools for disentangling the complex process interplay that drives estuarine biogeochemical dynamics, for assessing the quantitative role of estuaries in global biogeochemical cycles and for predicting their response to anthropogenic disturbances (land-use change, climate change and water management). Nevertheless, the application of RTMs for a regional or global estimation of estuarine biogeochemical transformations and fluxes is generally compromised by their high computational and data demands. Here, we describe C-GEM (Carbon-Generic Estuary Model), a new one-dimensional, computationally efficient RTM that reduces data requirements by using a generic, theoretical framework based on the direct relationship between estuarine geometry and hydrodynamics. Despite its efficiency, it provides an accurate description of estuarine hydrodynamics, salt transport and biogeochemistry on the appropriate spatio–temporal scales. We provide a detailed description of the model, as well as a protocol for its set-up. The new model is then applied to the funnel-shaped Scheldt estuary (BE/NL), one of the best-surveyed estuarine systems in the world. Its performance is evaluated through comprehensive model–data and model–model comparisons. Model results show that C-GEM captures the dominant features of the biogeochemical cycling in the Scheldt estuary. Longitudinal steady-state profiles of oxygen, ammonium, nitrate and silica are generally in good agreement with measured data. In addition, simulated, system-wide integrated reaction rates of the main pelagic biogeochemical processes are comparable with those obtained using a high-resolved, two-dimensional RTM. A comparison of fully transient simulations results with those of a two-dimensional model shows that the estuarine net ecosystem metabolism (NEM) only differs by about 10%, while system-wide estimates of individual biogeochemical processes never diverge by more than 40%. A sensitivity analysis is carried out to assess the sensitivity of biogeochemical processes to uncertainties in parameter values. Results reveal that the geometric parameters LC (estuarine convergence length) and H (water depth), as well as the rate constant of organic matter degradation (kox) exert an important influence on the biogeochemical functioning of the estuary. The sensitivity results also show that, currently, the most important hurdle towards regional- or global-scale applications arises from the lack of an objective framework for sediment and biogeochemical process parameterization. They, therefore, emphasize the need for a global compilation of biogeochemical parameter values that can help identify common trends and possible relationships between parameters and controlling factors, such as climate, catchment characteristics and anthropic pressure.
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...