ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • 2010-2014  (18)
  • 1995-1999
  • 2014  (18)
Sammlung
Schlagwörter
Verlag/Herausgeber
Erscheinungszeitraum
  • 2010-2014  (18)
  • 1995-1999
Jahr
  • 1
    Publikationsdatum: 2014-06-01
    Beschreibung: The hydrologic response to climate forcing in the Indo-Pacific warm pool region has varied spatially over the past 25,000 years. For example, drier conditions are inferred on Java and Borneo for the period following the end of the Last Glacial Maximum, whereas wetter conditions are reconstructed for northwest Australia. The response of vegetation to these past rainfall variations is poorly constrained. Using a suite of 30 surface marine sediment samples from throughout the Indo-Pacific warm pool, we demonstrate that today the stable isotopic composition of vascular plant fatty acids (13 Cfa) reflects the regional vegetation composition. This in turn is controlled by the seasonality of rainfall consistent with dry season water stress. Applying this proxy in a sediment core from offshore northeast Borneo, we show broadly similar vegetation cover during the Last Glacial Maximum and the Holocene, suggesting that, despite generally drier glacial conditions, there was no pronounced dry season. In contrast, 13Cfa and pollen data from a core off the coast of Sumba indicate an expansion of C 4 herbs during the most recent glaciation, implying enhanced aridity and water stress during the dry season. Holocene vegetation trends are also consistent with a response to dry season water stress. We therefore conclude that vegetation in tropical monsoon regions is susceptible to increases in water stress arising from an enhanced seasonality of rainfall, as has occurred in past decades. © 2014 Macmillan Publishers Limited.
    Print ISSN: 1752-0894
    Digitale ISSN: 1752-0908
    Thema: Geologie und Paläontologie
    Publiziert von Springer Nature
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2014-04-30
    Print ISSN: 0028-0836
    Digitale ISSN: 1476-4687
    Thema: Biologie , Chemie und Pharmazie , Medizin , Allgemeine Naturwissenschaft , Physik
    Publiziert von Springer Nature
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2014-03-01
    Print ISSN: 0012-821X
    Digitale ISSN: 1385-013X
    Thema: Geologie und Paläontologie , Physik
    Publiziert von Elsevier
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Publikationsdatum: 2014-02-01
    Print ISSN: 0012-821X
    Digitale ISSN: 1385-013X
    Thema: Geologie und Paläontologie , Physik
    Publiziert von Elsevier
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Publikationsdatum: 2022-05-25
    Beschreibung: © The Author(s), 2014. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Earth and Planetary Science Letters 389 (2014): 200-208, doi:10.1016/j.epsl.2013.12.037.
    Beschreibung: Antarctic Intermediate Water (AAIW) is a key player in the global ocean circulation, contributing to the upper limb of the Atlantic Meridional Overturning Circulation (AMOC), and influencing interhemispheric heat exchange and the distribution of salinity, nutrients and carbon. However, the deglacial history of AAIW flow into the North Atlantic is controversial. Here we present a multicore-top neodymium isotope calibration, which confirms the ability of unclean foraminifera to faithfully record bottom water neodymium isotopic composition (εNdεNd) values in their authigenic coatings. We then present the first foraminifera-based reconstruction of εNdεNd from three sediment cores retrieved from within modern AAIW, in the western tropical North Atlantic. Our records reveal similar glacial and interglacial contributions of AAIW, and a pronounced decrease in the AAIW fraction during North Atlantic deglacial cold episodes, Heinrich Stadial 1 (HS1) and Younger Dryas (YD). Our results suggest two separate phases of reduced fraction of AAIW in the tropical Atlantic during HS1, with a greater reduction during early HS1. If a reduction in AAIW fraction also reflects reduced AMOC strength, this finding may explain why, in many regions, there are two phases of hydrologic change within HS1, and why atmospheric CO2 rose more rapidly during early than late HS1. Our result suggesting less flow of AAIW into the Atlantic during North Atlantic cold events contrasts with evidence from the Pacific, where intermediate-depth εNdεNd records may indicate increased flow of AAIW into the Pacific during the these same events. Antiphased εNdεNd behavior between intermediate depths of the North Atlantic and Pacific implies that the flow of AAIW into Atlantic and Pacific seesawed during the last deglaciation.
    Beschreibung: This work was supported by US NSF grants and a Lawrence J. Pratt and Melinda M. Hall Endowed Fund for Interdisciplinary Research Award to D.W.O. and W.B.C. and by a Taiwan NSC Postdoctoral Fellowship (NSC98-2917-I-564-132) to K.F.H.
    Schlagwort(e): Nd isotopes ; Antarctic intermediate water ; Atlantic meridional overturning circulation ; Deglacial variability ; North Atlantic cold events
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Publikationsdatum: 2022-05-25
    Beschreibung: © The Author(s), 2013. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Earth and Planetary Science Letters 387 (2014): 240–251, doi:10.1016/j.epsl.2013.11.032.
    Beschreibung: Evidence from geologic archives suggests that there were large changes in the tropical hydrologic cycle associated with the two prominent northern hemisphere deglacial cooling events, Heinrich Stadial 1 (HS1; ∼19 to 15 kyr BP; kyr BP = 1000 yr before present) and the Younger Dryas (∼12.9 to 11.7 kyr BP). These hydrologic shifts have been alternatively attributed to high and low latitude origin. Here, we present a new record of hydrologic variability based on planktic foraminifera-derived δ18O of seawater (δ18Osw) estimates from a sediment core from the tropical Eastern Indian Ocean, and using 12 additional δ18Osw records, construct a single record of the dominant mode of tropical Eastern Equatorial Pacific and Indo-Pacific Warm Pool (IPWP) hydrologic variability. We show that deglacial hydrologic shifts parallel variations in the reconstructed interhemispheric temperature gradient, suggesting a strong response to variations in the Atlantic Meridional Overturning Circulation and the attendant heat redistribution. A transient model simulation of the last deglaciation suggests that hydrologic changes, including a southward shift in the Intertropical Convergence Zone (ITCZ) which likely occurred during these northern hemisphere cold events, coupled with oceanic advection and mixing, resulted in increased salinity in the Indonesian region of the IPWP and the eastern tropical Pacific, which is recorded by the δ18Osw proxy. Based on our observations and modeling results we suggest the interhemispheric temperature gradient directly controls the tropical hydrologic cycle on these time scales, which in turn mediates poleward atmospheric heat transport.
    Beschreibung: ThisworkwasfundedbytheNationalScienceFoundation;theOceanandClimateChangeInstituteandtheAcademicProgramsOfficeatWoodsHoleOceano-graphicInstitution;BMBF(PABESIA);andDFG(He3412/15-1)
    Schlagwort(e): Indo-Pacific ; Eastern Equatorial Pacific ; δ18O of seawater ; Deglaciation ; Heat transport
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Format: application/pdf
    Format: application/msword
    Format: text/plain
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    Publikationsdatum: 2022-05-26
    Beschreibung: Author Posting. © The Author(s), 2014. This is the author's version of the work. It is posted here by permission of Nature Publishing Group for personal use, not for redistribution. The definitive version was published in Nature 509 (2014): 76-80, doi:10.1038/nature13196.
    Beschreibung: The response of the tropical climate in the Indian Ocean realm to abrupt climate change events in the North Atlantic Ocean is contentious. Repositioning of the intertropical convergence zone is thought to have been responsible for changes in tropical hydroclimate during North Atlantic cold spells1–5, but the dearth of high-resolution records outside the monsoon realm in the Indian Ocean precludes a full understanding of this remote relationship and its underlying mechanisms. Here we show that slowdowns of the Atlantic meridional overturning circulation during Heinrich stadials and the Younger Dryas stadial affected the tropical Indian Ocean hydroclimate through changes to the Hadley circulation including a southward shift in the rising branch (the intertropical convergence zone) and an overall weakening over the southern Indian Ocean. Our results are based on new, high-resolution sea surface temperature and seawater oxygen isotope records of well dated sedimentary archives from the tropical eastern Indian Ocean for the past 45,000 years, combined with climate model simulations of Atlantic circulation slowdown under Marine Isotope Stages 2 and 3 boundary conditions. Similar conditions in the east and west of the basin rule out a zonal dipole structure as the dominant forcing of the tropical Indian Ocean hydroclimate of millennial-scale events. Results from our simulations and proxy data suggest dry conditions in the northern Indian Ocean realm and wet and warm conditions in the southern realm during North Atlantic cold spells.
    Beschreibung: This study was funded by the German Bundesministerium für Bildung und Forschung (grant 03G0189A) and the Deutsche Forschungsgemeinschaft (DFG grants HE3412/15-1 and STE1044/4-1, and the DFG Research Centre/Cluster of Excellence ‘The Ocean in the Earth System’). D.W.O. is funded by the US NSF, R.D.P.-H. is supported by Chilean FONDAP 15110009/ICM Nucleus NC120066.
    Beschreibung: 2014-10-30
    Repository-Name: Woods Hole Open Access Server
    Materialart: Preprint
    Format: application/postscript
    Format: application/pdf
    Format: image/jpeg
    Format: image/tiff
    Format: application/vnd.ms-excel
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    facet.materialart.
    Unbekannt
    PANGAEA
    In:  Supplement to: Mohtadi, Mahyar; Prange, Matthias; Oppo, Delia W; De Pol-Holz, Ricardo; Merkel, Ute; Zhang, Xiao; Steinke, Stephan; Lückge, Andreas (2014): North Atlantic forcing of tropical Indian Ocean climate. Nature, 509(7498), 76-80, https://doi.org/10.1038/nature13196
    Publikationsdatum: 2023-03-03
    Beschreibung: The response of the tropical climate in the Indian Ocean realm to abrupt climate change events in the North Atlantic Ocean is contentious. Repositioning of the intertropical convergence zone is thought to have been responsible for changes in tropical hydroclimate during North Atlantic cold spells1, 2, 3, 4, 5, but the dearth of high-resolution records outside the monsoon realm in the Indian Ocean precludes a full understanding of this remote relationship and its underlying mechanisms. Here we show that slowdowns of the Atlantic meridional overturning circulation during Heinrich stadials and the Younger Dryas stadial affected the tropical Indian Ocean hydroclimate through changes to the Hadley circulation including a southward shift in the rising branch (the intertropical convergence zone) and an overall weakening over the southern Indian Ocean. Our results are based on new, high-resolution sea surface temperature and seawater oxygen isotope records of well-dated sedimentary archives from the tropical eastern Indian Ocean for the past 45,000 years, combined with climate model simulations of Atlantic circulation slowdown under Marine Isotope Stages 2 and 3 boundary conditions. Similar conditions in the east and west of the basin rule out a zonal dipole structure as the dominant forcing of the tropical Indian Ocean hydroclimate of millennial-scale events. Results from our simulations and proxy data suggest dry conditions in the northern Indian Ocean realm and wet and warm conditions in the southern realm during North Atlantic cold spells.
    Schlagwort(e): Center for Marine Environmental Sciences; MARUM
    Materialart: Dataset
    Format: application/zip, 4 datasets
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    facet.materialart.
    Unbekannt
    PANGAEA
    In:  Supplement to: Gibbons, Fern T; Oppo, Delia W; Mohtadi, Mahyar; Rosenthal, Yair; Cheng, Jun; Liu, Zhengyu; Linsley, Braddock K (2014): Deglacial d18O and hydrologic variability in the tropical Pacific and Indian Oceans. Earth and Planetary Science Letters, 387, 240-251, https://doi.org/10.1016/j.epsl.2013.11.032
    Publikationsdatum: 2023-03-03
    Beschreibung: Evidence from geologic archives suggests that there were large changes in the tropical hydrologic cycle associated with the two prominent northern hemisphere deglacial cooling events, Heinrich Stadial 1 (HS1; ~19 to 15 kyr BP; kyr BP = 1000 yr before present) and the Younger Dryas (~12.9 to 11.7 kyr BP). These hydrologic shifts have been alternatively attributed to high and low latitude origin. Here, we present a new record of hydrologic variability based on planktic foraminifera-derived d18O of seawater (d18Osw) estimates from a sediment core from the tropical Eastern Indian Ocean, and using 12 additional d18Osw records, construct a single record of the dominant mode of tropical Eastern Equatorial Pacific and Indo-Pacific Warm Pool (IPWP) hydrologic variability. We show that deglacial hydrologic shifts parallel variations in the reconstructed interhemispheric temperature gradient, suggesting a strong response to variations in the Atlantic Meridional Overturning Circulation and the attendant heat redistribution. A transient model simulation of the last deglaciation suggests that hydrologic changes, including a southward shift in the Intertropical Convergence Zone (ITCZ) which likely occurred during these northern hemisphere cold events, coupled with oceanic advection and mixing, resulted in increased salinity in the Indonesian region of the IPWP and the eastern tropical Pacific, which is recorded by the d18Osw proxy. Based on our observations and modeling results we suggest the interhemispheric temperature gradient directly controls the tropical hydrologic cycle on these time scales, which in turn mediates poleward atmospheric heat transport.
    Schlagwort(e): Center for Marine Environmental Sciences; IMAGES; International Marine Global Change Study; MARUM
    Materialart: Dataset
    Format: application/zip, 4 datasets
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    facet.materialart.
    Unbekannt
    PANGAEA
    In:  Supplement to: Came, Rosemarie E; Oppo, Delia W; Curry, William B; Lynch-Stieglitz, Jean (2008): Deglacial variability in the surface return flow of the Atlantic meridional overturning circulation. Paleoceanography, 23(1), PA1217, https://doi.org/10.1029/2007PA001450
    Publikationsdatum: 2023-06-27
    Beschreibung: Benthic foraminiferal Cd/Ca from a Florida Current sediment core documents the history of the northward penetration of southern source waters within the surface return flow of the Atlantic meridional overturning circulation (AMOC). Cd seawater estimates (CdW) indicate that intermediate-depth southern source waters crossed the equator and contributed to the Florida Current during the Bølling-Allerød warm period of the last deglaciation, consistent with evidence of only a modest AMOC reduction compared to today. The CdW estimates also provide the first paleoceanographic evidence of a reduction in the influence of intermediate-depth southern source waters within the Florida Current during the Younger Dryas, a deglacial cold event characterized by a weak North Atlantic AMOC. Our results reveal a close correspondence between the northward penetration of intermediate-depth southern source waters and the influence of North Atlantic Deep Water, suggesting a possible link between intermediate-depth southern source waters and the strength of the Atlantic AMOC.
    Schlagwort(e): Age, 14C AMS; Age, 14C calibrated; Age, dated; Age, dated material; Age, dated standard deviation; Calendar age; Calendar age, maximum/old; Calendar age, minimum/young; DEPTH, sediment/rock; Event label; Florida Strait; GC; Gravity corer; Integrated Ocean Drilling Program / International Ocean Discovery Program; IODP; KN166-2; Knorr; KNR166-2; KNR166-2-31; KNR166-2-31JPC; Laboratory code/label; North Atlantic; OCE205-2-100GGC; OCE205-2-100GGGC; PC; Piston corer
    Materialart: Dataset
    Format: text/tab-separated-values, 209 data points
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...