ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Weitere Quellen  (3)
  • Elsevier  (3)
  • 2010-2014  (3)
  • 2013  (2)
  • 2012  (1)
  • 1
    Publikationsdatum: 2019-09-23
    Beschreibung: We present a high-resolution marine record of sediment input from the Guayas River, Ecuador, that reflects changes in precipitation along western equatorial South America during the last 18ka. We use log (Ti/Ca) derived from X-ray Fluorescence (XRF) to document terrigenous input from riverine runoff that integrates rainfall from the Guayas River catchment. We find that rainfall-induced riverine runoff has increased during the Holocene and decreased during the last deglaciation. Superimposed on those long-term trends, we find that rainfall was probably slightly increased during the Younger Dryas, while the Heinrich event 1 was marked by an extreme load of terrigenous input, probably reflecting one of the wettest period over the time interval studied. When we compare our results to other Deglacial to Holocene rainfall records located across the tropical South American continent, different modes of variability become apparent. The records of rainfall variability imply that changes in the hydrological cycle at orbital and sub-orbital timescales were different from western to eastern South America. Orbital forcing caused an antiphase behavior in rainfall trends between eastern and western equatorial South America. In contrast, millennial-scale rainfall changes, remotely connected to the North Atlantic climate variability, led to homogenously wetter conditions over eastern and western equatorial South America during North Atlantic cold spells. These results may provide helpful diagnostics for testing the regional rainfall sensitivity in climate models and help to refine rainfall projections in South America for the next century.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2014-04-24
    Beschreibung: The Gorringe Bank is a gigantic seamount that separates the Horseshoe and Tagus abyssal plains offshore SW Iberia, in a zone that hosts the convergent boundary between the Africa and Eurasia plates. Although the region has been the focus of numerous investigations since the early 1970s, the lack of appropriate geophysical data makes the nature of the basement, and thus the origin of the structures, still debated. In this work, we present combined P-wave seismic velocity and gravity models along a transect that crosses the Gorringe Bank from the Tagus to the Horseshoe abyssal plains. The P-wave velocity structure of the basement is similar in the Tagus and Horseshoe plains. It shows a 2.5–3.0 km-thick top layer with a velocity gradient twice stronger than oceanic Layer 2 and an abrupt change to an underlying layer with a five-fold weaker gradient. Velocity and density is lower beneath the Gorringe Bank probably due to enhanced fracturing, that have led to rock disaggregation in the sediment-starved northern flank. In contrast to previous velocity models of this region, there is no evidence of a sharp crust–mantle boundary in any of the record sections. The modelling results indicate that the sediment overlays directly serpentinite rock, exhumed from the mantle with a degree of serpentinization decreasing from a maximum of 70–80% under the top of Gorringe Bank to less than 5% at a depth of ∼20 km. We propose that the three domains were originally part of a single serpentine rock band, of nature and possibly origin similar to the Iberia Abyssal Plain ocean–continent transition, which was probably generated during the earliest phase of the North Atlantic opening that followed continental crust breakup (Early Cretaceous). During the Miocene, the NW–SE trending Eurasia–Africa convergence resulted in thrusting of the southeastern segment of the exhumed serpentinite band over the northwestern one, forming the Gorringe Bank. The local deformation associated to plate convergence and uplift could have promoted pervasive rock fracturing of the overriding plate, leading eventually to rock disaggregation in the northern flank of the GB, which could be now a potential source of rock avalanches and tsunamis.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2019-09-23
    Beschreibung: We present new nitrogen isotope data from the water column and surface sediments for paleo–proxy validation collected along the Peruvian and Ecuadorian margins between 1°N and 18°S. Productivity proxies in the bulk sediment (organic carbon, total nitrogen, biogenic opal, C37 alkenone concentrations) and 15N/14N ratios were measured at more than 80 locations within and outside the present-day Peruvian oxygen minimum zone (OMZ). Microbial N-loss to N2 in subsurface waters under O2 deficient conditions leaves a characteristic 15N-enriched signal in underlying sediments. We find that phytoplankton nutrient uptake in surface waters within the high nutrient, low chlorophyll (HNLC) regions of the Peruvian upwelling system influences the sedimentary signal as well. How the δ15Nsed signal is linked to these processes is studied by comparing core-top values to the 15N/14N of nitrate and nitrite (δ15NNOx) in the upper 200 m of the water column. Between 1°N and 10°S, subsurface O2 is still high enough to suppress N-loss keeping δ15NNOx values relatively low in the subsurface waters. However δ15NNOx values increase toward the surface due to partial nitrate utilization in the photic zone in this HNLC portion of the system. δ15Nsed is consistently lower than the isotopic signature of upwelled NO3−, likely due to the corresponding production of 15N depleted organic matter. Between 10°S and 15°S, the current position of perennial upwelling cells, HNLC conditions are relaxed and biological production and near-surface phytoplankton uptake of upwelled NO3− are most intense. In addition, subsurface O2 concentration decreases to levels sufficient for N-loss by denitrification and/or anammox, resulting in elevated subsurface δ15NNOx values in the source waters for coastal upwelling. Increasingly higher production southward is reflected by various productivity proxies in the sediments, while the north–south gradient towards stronger surface NO3− utilization and subsurface N-loss is reflected in the surface sediment 15N/14N ratios. South of 10°S, δ15Nsed is lower than maximum water column δ15NNOx values most likely because only a portion of the upwelled water originates from the depths where highest δ15NNOx values prevail. Though the enrichment of δ15NNOx in the subsurface waters is unambiguously reflected in δ15Nsed values, the magnitude of δ15Nsed enrichment depends on both the depth of upwelled waters and high subsurface δ15NNOx values produce by N-loss. Overall, the degree of N-loss influencing subsurface δ15NNOx values, the depth origin of upwelled waters, and the degree of near-surface nitrate utilization under HNLC conditions should be considered for the interpretation of paleo δ15Nsed records from the Peruvian oxygen minimum zone.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...