ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2010-2014  (2)
  • 1980-1984
  • 2013  (2)
Collection
Years
  • 2010-2014  (2)
  • 1980-1984
Year
  • 1
    Publication Date: 2013-02-07
    Description: The marine controlled-source electromagnetic method has become a popular technique for mapping the electrical resistivity structure of the seafloor. Electromagnetic fields, produced by an electric dipole transmitter, diffuse through the earth and are recorded on the seabed by nodal or cable based electric dipole receivers. Accurate information on transmitter and receiver geometry is extremely important for proper interpretation; errors in the position and orientation of the transmitter and/or the receivers propagate into errors in the predicted seafloor resistivity. We consider the special situation where a receiver cable is towed in the vicinity of a transmitter which is located on the seafloor with a known position and orientation. We theoretically and numerically examine the response of this system for a selection of 1D, 2D, and 3D models, and show that although the electromagnetic field recorded at early times contains information about the subsurface resistivity, the late time decay of the transient response is only a function of the seawater conductivity and receiver position for all the models we consider. In fact, the shape of the late time decay is almost exactly the same as that of a dipole in a wholespace having the same resistivity as seawater. This shows that late time transient information can be used to determine the position of the receiver cable, whereas early time information can be used to determine the resistivity structure of the seafloor.
    Print ISSN: 0016-8033
    Electronic ISSN: 1942-2156
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    European Association of Geoscientists & Engineers
    In:  Geophysical Prospecting, 61 (4). pp. 842-856.
    Publication Date: 2017-05-19
    Description: Gas hydrates are a potential energy resource, a possible factor in climate change and an exploration geohazard. The University of Toronto has deployed a permanent seafloor time-domain controlled source electromagnetic (CSEM) system offshore Vancouver Island, within the framework of the NEPTUNE Canada underwater cabled observatory. Hydrates are known to be present in the area and due to their electrically resistive nature can be monitored by 5 permanent electric field receivers. However, two cased boreholes may be drilled near the CSEM site in the near future. To understand any potential distortions of the electric fields due to the metal, we model the marine electromagnetic response of a conductive steel borehole casing. First, we consider the commonly used canonical model consisting of a 100 m, 100 m thick resistive hydrocarbon layer embedded at a depth of 1000 m in a 1 m conductive host medium, with the addition of a typical steel production casing extending from the seafloor to the resistive zone. Results show that in both the frequency and time domains the distortion produced by the casing occurs at smaller transmitter-receiver offsets than the offsets required to detect the resistive layer. Second, we consider the experimentally determined model of the offshore Vancouver Island hydrate zone, consisting of a 5.5 m, 36 m thick hydrate layer overlying a 0.7 m sedimentary half-space, with the addition of two borehole casings extending 300 m into the seafloor. In this case, results show that the distortion produced by casings located within a 100 m safety zone of the CSEM system will be measured at 4 of the 5 receivers. We conclude that the boreholes must be positioned at least 200 m away from the CSEM array so as to minimize the effects of the casings.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...