ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2013-02-16
    Description: [1]  Phytoplankton are an important component of the oceanic carbon cycle. Yet, due to methodological constraints, the carbon biomass of phytoplankton is poorly characterised. To address this limitation, we have explored the bio-optical relationship between in-situ measurements of the particle backscattering coefficient at 470 nm, b bp (470), and the phytoplankton carbon concentration for cells with diameter less than 20  μ m (C f ). We found a significant relationship between b bp (470) and C f for Atlantic oceanic waters with chlorophyll-a concentrations less than 0.4 mg m -3 (or b bp (470) 〈 0.003 m -1 ). This relationship could be used to estimate C f from data collected by in-situ autonomous platforms and from remote sensing of ocean colour.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-02-13
    Description: [1]  The Dead Sea, located in the rift valley between Jordan and Israel, is a hypersaline lake, resulting in unique biogeochemistry and optical properties. In the spring of 2004 we conducted two days of physical and optical measurements in the lake. Because of the significant effect of dissolved salts onthe optical propertiesof water,our analysis required a novel processing approach to obtain dissolved and total inherent optical properties from the measurements. In addition, we show that the lake's salinity can be estimated from measurements of hyper-spectral absorption or attenuation spectra in the red and infrared parts of the spectrum, using published values of specific absorption of dissolved NaCl, despite the fact that the lake's salt chemistry is complex. In situ observations demonstrated that the lake has a two-layer structure with a warm and more turbid layer at the top 20-30 m and a clearer colder layer below. Both the particulate and dissolved absorption are well approximated by exponentially decreasing functions with the spectral slope of the particulate absorption about half that of the dissolved fraction and consistent with other aquatic environments. Both have relatively low and similar magnitudes in the blue (O(0.15 m -1 )). Mean particle size was observed to increase with depth consistent with precipitating salt crystals (observed in past campaigns) shown here toplay a major role in the lake's optical properties.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-11-28
    Description: [1]   Chiswell [2013] suggests that some of the conclusions drawn by Behrenfeld et al . [2013] are likely erroneous because of (1) the method used to calculate specific net biomass accumulation rates ( r ; d -1 ) over the seasonal cycle, (2) inconsistencies in the calculation of r and phytoplankton specific cell division rate, μ (d -1 ), and (3) uncertainties in the extrapolation of satellite data to the depth of the seasonal thermocline. Each of these concerns is addressed in the following subsections. We begin with a simple culture-based analogy that clarifies why switching between concentration-based and inventory-based expressions is required for calculating r when the mixed layer varies between shoaling and deepening conditions. This analogy is followed by a more specific mathematical treatment. We then explain why our previous comparisons between r and μ provide a conservative estimate of predator-prey coupling, followed by a discussion of uncertainties in satellite-based assessments of mixed layer phytoplankton biomass.
    Print ISSN: 0886-6236
    Electronic ISSN: 1944-9224
    Topics: Biology , Chemistry and Pharmacology , Geography , Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2013-05-22
    Description: [1]  Satellite measurements allow global assessments of phytoplankton concentrations and, from observed temporal changes in biomass, direct access to net biomass accumulation rates ( r ). For the subarctic Atlantic basin, analysis of annual cycles in r reveal that initiation of the annual blooming-phase does not occur in spring after stratification surpasses a critical threshold, but rather in early winter when growth conditions for phytoplankton are deteriorating. This finding has been confirmed with in situ profiling float data. The objective of the current study was to test whether satellite-based annual cycles in r are reproduced by the Biogeochemical Element Cycling - Community Climate System Model and, if so, to use the additional ecosystem properties resolved by the model to better understand factors controlling phytoplankton blooms. We find that the model gives a similar early onset time for the blooming phase, that this initiation is largely due to the physical disruption of phytoplankton-grazer interactions during mixed layer deepening, and that parallel increases in phytoplankton specific division and loss rates during spring maintain the subtle disruption in food web equilibrium that ultimately yields the spring bloom climax. The link between winter mixing and bloom dynamics is illustrated by contrasting annual plankton cycles between regions with deeper and shallower mixing. We show that maximum water column inventories of phytoplankton vary in proportion to maximum winter mixing depth, implying that future reductions in winter mixing may dampen plankton cycles in the subarctic Atlantic. We propose that ecosystem disturbance-recovery sequences are a unifying property of global ocean plankton blooms.
    Print ISSN: 0886-6236
    Electronic ISSN: 1944-9224
    Topics: Biology , Chemistry and Pharmacology , Geography , Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2013-09-25
    Print ISSN: 1742-464X
    Electronic ISSN: 1742-4658
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...