ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2012-07-15
    Print ISSN: 1802-6222
    Electronic ISSN: 1803-1943
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-10-19
    Description: We performed three-dimensional analysis of anisotropic parameters of body waves to develop a 3D self-consistent dynamic model of the syn-convergent extension in the Northern Apennines within the multidisciplinary project RETREAT. Simultaneous extension within the convergent margin can be the consequence of the retreat of the subducting Adriatic plate from the orogenic front, caused by sub-lithosphere mantle processes that seismic anisotropy can help to decipher. We use data recorded by the RETREAT temporary array consisting of 35 stations complemented by data of permanent INGV observatories. Currently, 18-months of data are available from some stations, representing half of the passive experiment duration. We detect many examples of core-refracted shear-wave splitting within the upper mantle, and observe both distinct lateral variations of anisotropic parameters and their dependence on the direction of propagation. In particular, the fast shear-wave polarization changes from slab-perpendicular to slab-parallel along the Apennines chain. There is also a distinct change in the anisotropic signals across the presumed boundary of the Tyrrhenian and Adriatic micro-plates. Variations of the splitting time delays and orientation of the fast shear waves, together with considerations on the geodynamics of the area, seem to exclude simple sub-lithosphere mantle corner flow as the only source of the observed anisotropy. Alternate models include (1) a frozen-in fabric of different lithosphere domains, and (2) complex mantle flow associated with the Plio-Pleisocene uplift and extension of Tuscany.
    Description: Published
    Description: Vienna
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: open
    Keywords: anisotropy ; SKS shear wave splitting ; Northern Apennines ; 04. Solid Earth::04.06. Seismology::04.06.07. Tomography and anisotropy ; 04. Solid Earth::04.06. Seismology::04.06.09. Waves and wave analysis ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.06. Subduction related processes
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Poster session
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-17
    Description: In 2004 and 2005 a passive seismic experiment was carried out in the northern and northeastern part of the Bohemian Massif (Sudetes) to study the lithospheric structure. We present results from Ps and Sp receiver function analyses. With one exception, Moho depth at stations in the northwestern part of the study area varies between 28 and 32 km. Thicker crust up to 35 km was mapped toward the south (Moldanubian unit) and toward the east (Moravo–Silesian and Brunovistulian units) confirming results from previous active seismic measurements. There exists a relatively sharp step in Moho depth between units of the central Sudetes (~ 30 km) and the Moravo–Silesian unit (~ 35 km). The vp/vs ratios inverted from primary and multiple Moho Ps conversions hint for different crustal compositions of the units. Toward the Carpathian thrust we have no clear indications for any crustal root or slab beneath the western Carpathians. However, our data suggests a deepening of the Moho or at least a complicated crust–mantle transition in this area. Additional Ps phases were observed between 6 and 10 s delay time in the Sudetes. These phases cannot be explained by Moho reverberations, but are most probably caused by low velocity zones in the middle crust or lithospheric mantle as shown by modeling of theoretical receiver functions. The stations showing these abnormal phases are located in the area of Permo-Carboniferous basins on probably Teplá–Barrandian crust. Therefore we assume that the phases hint at a mid-crustal low velocity zone between 16 and 20 km depth, which is interpreted as a felsic solidified magma reservoir of the Permo-Carboniferous volcanism beneath the Sudetic Basins. Sp receiver functions show phases with negative polarity at 9 to 12 s lead time on average, which we interpret as lithosphere–asthenosphere boundary at about 80 to 110 km depth.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-02-12
    Description: In 2004 and 2005 a passive seismic experiment was carried out in the northern and northeastern part of the Bohemian Massif (Sudetes) to study the lithospheric structure. We present results from Ps and Sp receiver function analyses. With one exception, Moho depth at stations in the northwestern part of the study area varies between 28 and 32 km. Thicker crust up to 35 km was mapped toward the south (Moldanubian unit) and toward the east (Moravo–Silesian and Brunovistulian units) confirming results from previous active seismic measurements. There exists a relatively sharp step in Moho depth between units of the central Sudetes (~ 30 km) and the Moravo–Silesian unit (~ 35 km). The vp/vs ratios inverted from primary and multiple Moho Ps conversions hint for different crustal compositions of the units. Toward the Carpathian thrust we have no clear indications for any crustal root or slab beneath the western Carpathians. However, our data suggests a deepening of the Moho or at least a complicated crust–mantle transition in this area. Additional Ps phases were observed between 6 and 10 s delay time in the Sudetes. These phases cannot be explained by Moho reverberations, but are most probably caused by low velocity zones in the middle crust or lithospheric mantle as shown by modeling of theoretical receiver functions. The stations showing these abnormal phases are located in the area of Permo-Carboniferous basins on probably Teplá–Barrandian crust. Therefore we assume that the phases hint at a mid-crustal low velocity zone between 16 and 20 km depth, which is interpreted as a felsic solidified magma reservoir of the Permo-Carboniferous volcanism beneath the Sudetic Basins. Sp receiver functions show phases with negative polarity at 9 to 12 s lead time on average, which we interpret as lithosphere–asthenosphere boundary at about 80 to 110 km depth.
    Keywords: 550 - Earth sciences
    Language: English
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2020-02-12
    Keywords: 550 - Earth sciences
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...