ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2010-2014  (5)
  • 2011  (5)
Collection
Publisher
Years
  • 2010-2014  (5)
Year
  • 1
    Publication Date: 2011-08-09
    Print ISSN: 0276-0460
    Electronic ISSN: 1432-1157
    Topics: Geosciences
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-16
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-16
    Description: Continental slope terraces at the southern Argentine margin are part of a significant contourite depositional system composed of a variety of drifts, channels, and sediment waves. Here, a refined seismostratigraphic model for the sedimentary development of the Valentin Feilberg Terrace located in ~4.1 km water depth is presented. Analyzing multichannel seismic profiles across and along this terrace, significant changes in terrace morphology and seismic reflection character are identified and interpreted to reflect variations in deep water hydrography from Late Miocene to recent times, involving variable flow of Antarctic Bottom Water and Circumpolar Deep Water. A prominent basin-wide aggradational seismic unit is interpreted to represent the Mid-Miocene climatic optimum (~17–14 Ma). A major current reorganization can be inferred for the time ~14–12 Ma when the Valentin Feilberg Terrace started growing due to the deposition of sheeted and mounded drifts. After ~12 Ma, bottom water flow remained vigorous at both margins of the terrace. Another intensification of bottom flow occurred at ~5–6 Ma when a mounded drift, moats, and sediment waves developed on the terrace. This may have been caused by a general change in deep water mass organization following the closure of the Panamanian gateway, and a subsequent stronger southward flow of North Atlantic Deep Water.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    In:  EPIC3Colloquium of the DFG Priority Program SPP1375:South Atlantic Margin Processes and Links with onshore Evolution (SAMPLE), Potsdam, 2011-06-07-2011-06-10
    Publication Date: 2019-07-16
    Description: Sedimentary processes in the Argentine Basin and particularly on the Argentine margin are largely controlled by the interaction of the seafloor with the abyssal circulation which is characterised by the interaction of northward flowing Antarctic water masses (Antarctic Intermediate Water, AAIW; Circumpolar Deep Water, CDW; Antarctic Bottom Water, AABW) and southward flowing North Atlantic Deep Water (NADW). The interaction of these water masses with the seafloor is obvious from the fact that the present depths of each of the water masses coincide with the position of a specific sedimentary terrace on continental slope. This set of continental slope terraces located between 44°S and 48°S reveals both erosional (e.g. channels) and depositional (e.g. sediment drifts) features of contourites. Here, we present the internal seismic structure of the terraces (especially the Valentin Feilberg Terrace), identify phases of terraces evolution in a seismostratigraphic context and discuss their record of the variability of the Neogene Southern Ocean palaeoceanography in response to the influence of global climate and tectonic events. Maps of reflectors depth and seismic unit thickness are compiled and the shape and location of unit depocentres relative to the continental slope are interpreted as indications for the major transport and depositional processes. Based on regional correlation we established a seismostratigraphic model for the sedimentary development of the Valentine Feilberg Terrace. The terrace grew from 17 Ma onward mainly under the influence of geostrophic bottom currents (AABW and CDW) originating from the south. A prominent intermediate unit that exhibits an aggradational stacking pattern is inferred to have been deposited during the Miocene Climatic Optimum (MCO, ~17-14 Ma). Above this unit the sediment record of the Valentine Feilberg Terrace can be divided into 5 subunits that show a variety of different drifts, moats and channels and contain a high resolution palaeoceanographic record of late Miocene to recent time. Depocentres are oriented parallel to the continental slope and thus represent mainly along-slope sediment transport. A major current reorganization can be inferred for the time ~14-12 Ma when the Valentine Feilberg Terrace started growing due to the deposition of sheeted and mounded drifts which at their distal ends partly covered a giant drift in the deep sea. After ~12 Ma bottom water flow remained vigorous at both margins of the terrace as indicated by a contouritic channel at the western side and by a current shaped inclined eastern flank. In contrast, the development of sheeted and mounded drifts, as well as the occurrence of erosional troughs suggests a bottom flow - likely at the CDW/AABW interface- that was quite variable in position and strength over the central terrace plateau. Another marked change in terrace architecture occurred at ~6 Ma when a mounded drift and other features (moats, sediment waves) indicating stronger bottom flow started developing on the Valentin Veilberg Terrace plateau. This may have been caused by a general change in deep water mass organization following the closure of the Panamanian gateway and a subsequent stronger southward flow of NADW.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    In:  EPIC37th European Ostracodologists’ Meeting, Graz, Austria, 2011-07-25-2011-07-28
    Publication Date: 2019-07-17
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...