ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Copernicus  (4)
  • 2010-2014  (4)
  • 1960-1964
  • 1915-1919
  • 2010  (4)
Collection
Years
  • 2010-2014  (4)
  • 1960-1964
  • 1915-1919
Year
  • 1
    Publication Date: 2010-11-25
    Description: This paper presents an analysis of the recent tropospheric molecular hydrogen (H2) budget with a particular focus on soil uptake and surface emissions. A variational inversion scheme is combined with observations from the RAMCES and EUROHYDROS atmospheric networks, which include continuous measurements performed between mid-2006 and mid-2009. Net H2 surface flux, soil uptake distinct from surface emissions and finally, soil uptake, biomass burning, anthropogenic emissions and N2 fixation-related emissions separately were inverted in several scenarios. The various inversions generate an estimate for each term of the H2 budget. The net H2 flux per region (High Northern Hemisphere, Tropics and High Southern Hemisphere) varies between −8 and 8 Tg yr−1. The best inversion in terms of fit to the observations combines updated prior surface emissions and a soil deposition velocity map that is based on soil uptake measurements. Our estimate of global H2 soil uptake is −59 ± 4.0 Tg yr−1. Forty per cent of this uptake is located in the High Northern Hemisphere and 55% is located in the Tropics. In terms of surface emissions, seasonality is mainly driven by biomass burning emissions. The inferred European anthropogenic emissions are consistent with independent H2 emissions estimated using a H2/CO mass ratio of 0.034 and CO emissions considering their respective uncertainties. To constrain a more robust partition of H2 sources and sinks would need additional constraints, such as isotopic measurements.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2010-09-24
    Description: In this study two crop species, winter wheat (Triticum aestivum) and sugar beet (Beta vulgaris), were monitored over the course of five days during the entire season. We investigated the link of the main physiological leaf-level mechanisms, stomatal conductance and efficiency of photosynthetic energy conversion on canopy transpiration and photosynthetic CO2 uptake. The physiological status of 900 leaves of different plants in a natural canopy was characterized on the leaf level using chlorophyll fluorescence. Gas exchange measurements were performed at leaves of 12 individual plants of each species. Eddy covariance flux measurements provided information on CO2, water and energy fluxes on the field scale. The diurnal pattern of stomatal resistance on the leaf level was especially for sugar beet similar to the canopy resistance, which indicates that stomatal resistance may have a large impact on the bulk canopy resistance. The diurnal changes in canopy resistance appeared to have less effect on the evapotranspiration, which was mainly dependent on the amount of incoming radiation. The similar diurnal pattern of water use efficiency on the leaf level and on the canopy level during the day, underline the influence of physiological mechanisms of leaves on the canopy. The greatest difference between water use efficiency on leaf and canopy occurred in the morning, mainly due to an increase of stomatal resistance. Limitation of CO2 uptake occurred in the afternoon when water vapor pressure deficit increased. Maxima of net ecosystem productivity corresponded to the highest values of photosynthetic capacity of single leaves, which occurred before solar noon. Within the course of a few hours, photosynthetic efficiency and stomatal resistance of leaves varied and these variations were the reason for diurnal variations in the carbon fluxes of the whole field. During the seasonal development, the leaf area index was the main factor driving carbon and water exchange, when both crops were still growing. During senescence of winter wheat these structural parameters did not account for changes in canopy fluxes and remaining high green leaf material of sugar beet did not present the reduction in canopy fluxes due to beginning dormancy. We thus hypothesize that the functional status of plants is also important to correctly predict carbon and water fluxes throughout the season. We propose to additionally include the physiological status of plants in carbon flux models in order to improve the quality of the simulation of diurnal patterns of carbon fluxes.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2010-11-12
    Description: The recent increase of atmospheric methane is investigated by using two atmospheric inversions to quantify the global distribution of sources and sinks for the 2006–2008 period, and a process-based model of CH4 emissions by natural wetland ecosystems. Global emissions derived from inversions are found to have increased by 19 Tg on average in 2007 (16 to 21 Tg) and by 13 Tg in 2008 (6 to 20 Tg), as compared to the 1999–2006 period. A positive anomaly of tropical emissions is found to be the main contributor to the global emission anomaly of 2007 (~60–75%), with a dominant share attributed to natural wetlands (~66%). Abnormally high wetlands emissions from high latitudes are also detected by both inversions in 2007, contributing 15–30% of the global anomaly. Good agreement is found between the results of the wetland ecosystem model and the inversions for 2007. The inferred distribution of the source anomaly in 2007 is shown to be consistent with the observation of a more pronounced increase in near surface methane atmospheric growth rate at high latitudes, because the dilution of surface fluxes by convection is strong in the tropics and weak at high latitudes. The source anomaly in 2008 is found to be much larger in the wetland ecosystem model than in the inversions, suggesting a too strong sensitivity of bottom-up modeled emissions to precipitation. Changes in OH radicals during 2006–2008 are found to be less than 1% in inversions, with only a small impact on the inferred methane emissions.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2010-03-17
    Description: Current climate change models predict significant changes in rainfall patterns across Europe. To explore the effect of drought on soil CO2 efflux (FSoil) and on the contribution of litter to FSoil we used rain shelters to simulate a summer drought (May to July 2007) in an intensively managed grassland in Switzerland by reducing annual precipitation by around 30% similar to the hot and dry year 2003 in Central Europe. We added 13C-depleted as well as unlabelled grass/clover litter to quantify the litter-derived CO2 efflux (FLitter). Soil CO2 efflux and the 13C/12C isotope ratio (δ13C) of the respired CO2 after litter addition were measured during the growing season 2007. Drought significantly decreased FSoil in our litter addition experiment by 59% and FLitter by 81% during the drought period itself (May to July), indicating that drought had a stronger effect on the CO2 release from litter than on the belowground-derived CO2 efflux (FBG, i.e. soil organic matter (SOM) and root respiration). Despite large bursts in respired CO2 induced by the rewetting after prolonged drought, drought also reduced FSoil and FLitter during the entire 13C measurement period (April to October) by 26% and 37%, respectively. Overall, our findings show that drought decreased FSoil and altered its seasonality and its sources. Thus, the C balance of temperate grassland soils respond sensitively to changes in precipitation, a factor that needs to be considered in regional models predicting the impact of climate change on ecosystems C balance.
    Print ISSN: 1726-4170
    Electronic ISSN: 1726-4189
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...