ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2010-11-18
    Description: In this paper we present evidence that the observed increase in tropical upwelling after the year 2000 may be attributed to a change in the Brewer-Dobson circulation pattern. For this purpose, we use the concept of transit times derived from residual circulation trajectories and different in-situ measurements of ozone and nitrous dioxide. Observations from the Canadian midlatitude ozone profile record, probability density functions of in-situ N2O observations and a shift of the N2O-O3 correlation slopes, taken together, indicate that the increased upwelling in the tropics after the year 2000 appears to have triggered an intensification of tracer transport from the tropics into the extratropics in the lower stratosphere below about 500 K. This finding is corroborated by the fact that transit times along the shallow branch of the residual circulation into the LMS have decreased for the same time period (1993–2003). On a longer time scale (1979–2009), the transit time of the shallow residual circulation branch show a steady decrease of about −1 month/decade over the last 30 years, while the transit times of the deep branch remain unchanged. This highlights the fact that a change in the upwelling across the tropical tropopause is not a direct indicator for changes of the whole Brewer-Dobson circulation.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2010-08-03
    Description: The ozonolysis of α-pinene has been investigated under dry and humid conditions in the temperature range of 243–303 K. The results provided new insight into the role of water and temperature in the degradation mechanism of α-pinene and in the formation of secondary organic aerosols (SOA). The SOA yields were higher at humid conditions than at dry conditions. The water induced gain was largest for the lowest temperatures investigated (243 and 253 K). The increase in the SOA yields was dominated by water (and temperature) effects on the organic product distribution, whilst physical uptake of water was negligible. This will be demonstrated for the example of pinonaldehyde (PA) which was formed as a major product in the humid experiments with total molar yields of 0.30±0.06 at 303 K and 0.15±0.03 at 243 K. In the dry experiments the molar yields of PA were only 0.07±0.02 at 303 K and 0.02±0.02 at 253 K. The observed partitioning of PA as a function of the SOA mass present at 303 K limited the effective vapour pressure of pure PA pPA0 to the range of 0.01–0.001 Pa, 3–4 orders of magnitude lower than literature values. The corresponding mass partitioning coefficient was determined to KPA=0.005±0.004 m3 μg−1 and the total mass yield αPAtotal=0.37±0.08. At 303 K PA preferably stayed in the gas-phase, whereas at 253 K and 243 K it exclusively partitioned into the particulate phase. PA could thus account at least for half of the water induced gain in SOA mass at 253 K. The corresponding effect was negligible at 303 K because the PA preferably remained in the gas-phase. The yield of OH radicals, which were produced in the ozonolysis, was indirectly determined by means of the yield of cyclohexanone formed in the reaction of OH radicals with cyclohexane. OH yields of the α-pinene ozonolysis were determined to 0.67±0.17 for humid and 0.54±0.13 for dry conditions at 303 K, indicating a water dependent path of OH radical formation. For 253 and 243 K OH yields could be estimated to 0.5 with no significant difference between the dry and humid experiments. This is the first clear indication for OH radical formation by α-pinene ozonolysis at such low temperatures.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2010-08-06
    Description: The Mediterranean region is expected to experience substantial climatic change in the next 50 years. But, possible effects of climate change on biogenic volatile organic compound (VOC) emissions as well as on the formation of secondary organic aerosols (SOA) produced from these VOC are yet unexplored. To address such issues, the effects of temperature on the VOC emissions of Mediterranean Holm Oak and small Mediterranean stand of Wild Pistacio, Aleppo Pine, and Palestine Oak have been studied in the Jülich plant aerosol atmosphere chamber. For Holm Oak the optical and microphysical properties of the resulting SOA were investigated. Monoterpenes dominated the VOC emissions from Holm Oak (97.5%) and Mediterranean stand (97%). Higher temperatures enhanced the overall VOC emission but with different ratios of the emitted species. The amount of SOA increased linearly with the emission strength with a fractional mass yield of 6.0±0.6%, independent of the detailed emission pattern. The investigated particles were highly scattering with no absorption abilities. Their average hygroscopic growth factor of 1.13±0.03 at 90% RH with a critical diameter of droplet activation was 100±4 nm at a supersaturation of 0.4%. All microphysical properties did not depend on the detailed emission pattern, in accordance with an invariant O/C ratio (0.57(+0.03/−0.1)) of the SOA observed by high resolution aerosol mass spectrometry. The increase of Holm oak emissions with temperature (≈20% per degree) was stronger than e.g. for Boreal tree species (≈10% per degree). The SOA yield for Mediterranean trees determined here is similar as for Boreal trees. Increasing mean temperature in Mediterranean areas could thus have a stronger impact on BVOC emissions and SOA formation than in areas with Boreal forests.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2010-09-14
    Description: Atmospheric mineral aerosols contain CaCO3 as a reactive component. A novel method to produce CaCO3 aerosol was developed by spraying Ca(HCO3)2 solution, which was generated from a CaCO3 suspension and CO2. By aerosol mass spectrometry the freshly sprayed and dried aerosol was characterized to consist of pure Ca(HCO3)2 which under annealing in a tube furnace transformed into CaCO3. Transmission Electron Microscopy demonstrated that the particles produced were spherical. The method was able to generate aerosol of sufficient concentration and proper size for the study of physiochemical properties and investigations of heterogeneous reactions of mineral aerosol. The dried Ca(HCO3)2 particles were somewhat more hygroscopic than CaCO3 particles. However, during humidification a restructuring took place and ∼2/3 of the Ca(HCO3)2 was transformed to CaCO3. The mixed Ca(HCO3)2/CaCO3(s) particles were insoluble with a growth factor of 1.03 at 95% (hygroscopicity parameter κ=0.011±0.007) relative humidity. This compares to a corresponding growth factor of 1.01 for CaCO3(s) (κ=0.0016±0.0004). Mass spectrometric composition analysis, restructuring, and insolubility of the mixed particles suggested that solid Ca(HCO3)2(s) was observed. This would be in contrast to the current belief that Ca(HCO3)2(s) is thermodynamically instable. The CCN activity of Ca(HCO3)2(s) aerosol (κ≈0.15) is remarkably higher than that of CaCO3 aerosol (κ=0.0019±0.0007) and less than that of Ca(NO3)2. The noticeable but limited solubility of Ca(HCO3)2 of ≈0.01 mol/l explains limited hygroscopic growth and good CCN activity. Experiments in the Large Jülich Aerosol Chamber indicated that Ca(HCO3)2(s) could exist for several hours under dry atmospheric conditions. However, it was likely buried in a protective layer of CaCO3(s). We conclude that Ca(HCO3)2 may be formed in the atmosphere in cloud droplets of activated mineral dust by reaction of CaCO3 with CO2 and H2O. The presence of Ca(HCO3)2 and as a consequence an enhanced CCN activity may alter the influence of mineral aerosol on global climate.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2010-03-26
    Description: Atmospheric mineral aerosols contain CaCO3 as a reactive component. A novel method to produce CaCO3 aerosol was developed by spraying Ca(HCO3)2 solutions, which were generated from CaCO3 suspensions and CO2. By aerosol mass spectrometry the freshly sprayed aerosol was characterized to be Ca(HCO3)2 which under annealing in a tube furnace transformed into CaCO3. Transmission Electron Microscopy demonstrated that the particles produced were spherical. The method is easy to operate and was able to generate aerosol of sufficient concentration and proper size for the study of physiochemical properties as was demonstrated for hygroscopicity and CCN activity measurements, and investigations of heterogeneous reactions of mineral aerosol. Fresh Ca(HCO3)2 particles are somewhat more hygroscopic than CaCO3 particles although both have small growth factors of 1.03 and 1.01, respectively, at 95% relative humidity. The CCN activity of Ca(HCO3)2 aerosol is remarkably higher than that of CaCO3 aerosol and only slightly less than that of Ca(NO3)2. Experiments in the Large Jülich Aerosol Chamber showed that Ca(HCO3)2 can exist for several hours under dry atmospheric conditions which is in contrast to the current believe that Ca(HCO3)2 is unstable in the atmosphere. We conclude that Ca(HCO3)2 maybe be formed in the atmosphere in cloud droplets of activated mineral dust by reaction of CaCO3 with CO2 and H2O. The presence of Ca(HCO3)2 and as a consequence an enhanced CCN activity may alter the influence of mineral aerosol on global climate.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2010-02-05
    Description: The ozonolysis of α-pinene has been investigated under dry and humid conditions in the temperature range of 243–303 K. The results provided new insight into the role of water and temperature in the degradation mechanism of α-pinene and in the formation of secondary organic aerosols (SOA). The SOA yields were higher at humid conditions than at dry conditions. The water induced gain was largest for the lowest temperatures investigated (243 and 253 K). The increase in the SOA yields was dominated by water (and temperature) effects on the organic product distribution, whilst physical uptake of water was negligible. This will be demonstrated for the example of pinonaldehyde (PA) which was formed as a~major product in the humid experiments with total molar yields of 0.30±0.06 at 303 K and 0.15±0.03 at 243 K. In the dry experiments the molar yields of PA were only 0.07±0.02 at 303 K and 0.02±0.02 at 253 K. The observed partitioning of PA as a function of the SOA mass present at 303 K limited the effective vapour pressure of pure PA pPA0 to the range of 0.01–0.001 Pa, 3–4 orders of magnitude lower than literature values. The corresponding mass partitioning coefficient was determined to KPA=0.005±0.004 m3/μg and the total mass yield αPA.total=0.37±0.08. At 303 K PA preferably stayed in the gas-phase, whereas at 253 K and 243 K it exclusively partitioned into the particulate phase. PA could thus account at least for half of the water induced gain in SOA mass at 253 K. The corresponding effect was negligible at 303 K because the PA preferably remained in the gas-phase. The yield of OH radicals, which were produced in the ozonolysis, was indirectly determined by means of the yield of cyclohexanone formed in the reaction of OH radicals with cyclohexane. OH yields of the α-pinene ozonolysis were determined to 0.67±0.17 for humid and 0.54±0.13 for dry conditions at 303 K, indicating a water dependent path of OH radical formation. For 253 and 243 K OH yields could be estimated to 0.5 with no significant difference between the dry and humid experiments. This is the first clear indication for OH radical formation by α-pinene ozonolysis at such low temperatures.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2010-03-24
    Description: An Acoustic Doppler Current Profiler (ADCP) moored at the deep-sea ANTARES neutrino telescope site near Toulon, France, measured downward vertical currents of amplitudes up to 0.03 m s−1 in spring 2006. The currents were accompanied by enhanced levels of acoustic reflection by a factor of about 10 and by horizontal currents reaching 0.35 m s−1. These observations coincided with high levels of bioluminescence detected by the telescope. Although during winter 2006 deep dense-water formation occurred in this area, episodes of high levels of suspended particles and large vertical currents continuing into the summer are not direct evidence of this process. It is hypothesized that the main process allowing for particles to be moved across the entire water column (2500 m) within a few days, is local convection, triggered by small-mesoscale phenomena, such as meanders including a bipolar vortex, linked with boundary current instabilities.
    Print ISSN: 1812-0806
    Electronic ISSN: 1812-0822
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2010-12-09
    Description: A novel approach to consider additional spatial information in flood frequency analyses, especially for the estimation of discharges with recurrence intervals larger than 100 years, is presented. For this purpose, large flood quantiles, i.e. pairs of a discharge and its corresponding recurrence interval, as well as an upper bound discharge, are combined within a mixed bounded distribution function. The large flood quantiles are derived using probabilistic regional envelope curves (PRECs) for all sites of a pooling group. These PREC flood quantiles are introduced into an at-site flood frequency analysis by assuming that they are representative for the range of recurrence intervals which is covered by PREC flood quantiles. For recurrence intervals above a certain inflection point, a Generalised Extreme Value (GEV) distribution function with a positive shape parameter is used. This GEV asymptotically approaches an upper bound derived from an empirical envelope curve. The resulting mixed distribution function is composed of two distribution functions which are connected at the inflection point. This method is applied to 83 streamflow gauges in Saxony/Germany. Our analysis illustrates that the presented mixed bounded distribution function adequately considers PREC flood quantiles as well as an upper bound discharge. The introduction of both into an at-site flood frequency analysis improves the quantile estimation. A sensitivity analysis reveals that, for the target recurrence interval of 1000 years, the flood quantile estimation is less sensitive to the selection of an empirical envelope curve than to the selection of PREC discharges and of the inflection point between the mixed bounded distribution function.
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2010-10-29
    Description: High concentrations of organic matter accumulated in marine sediments during Oceanic Anoxic Events (OAEs) in the Cretaceous. Model studies examining these events invariably make use of global ocean circulation models. In this study, a regional model for the North Atlantic Basin during OAE2 at the Cenomanian-Turonian boundary is developed. A first order check of the results is performed by comparison with the results of a recent global Cenomanian CCSM3 run from which boundary and initial conditions were obtained. The regional model is able to maintain tracer patterns and to produce velocity patterns similar to the global model. The sensitivity of basin tracer and circulation patterns to changes in the geometry of the connections with the global ocean is examined with three experiments with different bathymetries near the sponges. Different geometries turn out to have little effect on tracer distribution, but do affect circulation and upwelling patterns. The regional model is also used to test the hypothesis that ocean circulation may be behind the deposition of black shales during OAEs. Three scenarios are tested which are thought to represent pre-OAE, OAE and post-OAE situations. Model results confirm that Pacific intermediate inflow together with coastal upwelling can have enhanced primary production during OAE2. A low sea level in the pre-OAE scenario can inhibit large scale black shale formation, as can the opening of the Equatorial Atlantic Seaway in the post-OAE scenario.
    Print ISSN: 1814-9340
    Electronic ISSN: 1814-9359
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2010-10-01
    Description: Laboratory studies have been carried out with the aim to improve our understanding of physicochemical processes which take place at the interface water ice/air initiated by solar irradiation with a wavelength of 121.6 nm. It was intended to mimic the processes of ice particles characteristic for Noctilucent Clouds (NLCs). The experimental set-up used includes a high-vacuum chamber, a gas handling system, a cryostat with temperature controller, a FTIR spectrometer, a vacuum ultraviolet hydrogen lamp and a microwave generator. We report the first results of measurements of the absolute photodesorption rate (loss of substance due to the escape of photoproducts into gas phase) from thin (20–100 nm) water ice samples kept in the temperature range of 120–150 K. The obtained results show that a flow of photoproducts into the gas phase is considerably lower as presumed in a recent study by Murray and Plane (2005). The experiments indicate that almost all photoproducts remain in the solid phase, and the principal chemical reaction between them is the recombination reaction H + OH→H2O which is evidently very fast. This means that direct photolysis of mesospheric ice particles seems to have no significant impact on the gas phase chemistry of the upper mesosphere.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...