ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • 2005-2009  (10)
  • 2008  (10)
Schlagwörter
Erscheinungszeitraum
  • 2005-2009  (10)
Jahr
  • 1
    facet.materialart.
    Unbekannt
    Instytut Oceanologii Polska Akademia Nauk, Sopot
    In:  Oceanologia, 50 (2). pp. 205-220.
    Publikationsdatum: 2017-02-03
    Beschreibung: Existing coupled biophysical models for Baltic larval cod drift, growth and survival use idealised constructed mean prey fields of nauplius distributions. These simulations revealed the best feeding conditions for Baltic cod larvae longer than 6 mm. For shorter, first feeding larvae (between 4.5 and 6 mm) pronounced differences in growth and survival were observed, which depend on food availability and to a lesser degree on ambient temperature. We performed runs with an Individual-based Model (IBM) for Baltic cod larvae in order to demonstrate how natural variability in prey abundance influences the survival success of first feeding larvae. In the Baltic, this larval stage lives mainly between 20 and 40 m depth and feeds exclusively on the nauplii of different calanoid copepods (Acartia spp., Pseudocalanus acuspes, Temora longicornis and Centropages hamatus). Prey data obtained from vertically stratified samples in the Bornholm Basin (Baltic Sea) in 2001 and 2002 indicate a strong variability at spatial and temporal scales. We calculated larval survival and growth in relation to natural variation of prey fields, i.e. species-specific nauplius abundance. The results of the model runs yielded larval survival rates from 60 to 100% if the mean size of nauplii species was taken and lower survival if prey consisted of early nauplius stages only.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2012-02-23
    Materialart: Conference or Workshop Item , NonPeerReviewed
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2017-01-09
    Beschreibung: To better understand recruitment variability in small pelagic fish like sprat, it is important to know when during the extended spawning season the successful recruits are predominantly produced and which environmental factors determine potential survival windows. Here, we inferred the temporal origin of 2-year classes (2002–2003) of western and central Baltic sprat by means of otolith microstructure analysis, and found that in both years recruits mainly originated from the summer months June and July. In both years, this period coincided with temperature conditions in the surface layer of 〉12 °C and peak seasonal abundance of the largest copepod stages of Acartia spp., the major prey item of sprat larvae. The peaks in seasonal sprat egg abundance, however, occurred in April 2002 and March 2003 and therefore about 1–2 months earlier than the long-term mean spawning peak of sprat in this area (end of May/beginning of June). We hypothesize that increased temperatures in the bottom layer of the Baltic, where the pre-spawning sprat stock concentrates during winter months, potentially caused this shift in sprat spawning patterns, although early spring temperatures and feeding conditions in upper water layers were still unfavourable for larval survival. Sprat recruitment, however, was comparatively strong in both 2002 and 2003, suggesting that summer born individuals had high enough survival rates to compensate for the spawning shift, possibly due to high summer temperatures, limited dispersion, and low predation mortalities by Baltic cod as the major predator of sprat. Recruits were on average younger in 2003 than 2002, yet length distributions in October were almost identical, likely because a period of substantially higher temperatures in July/August 2003 promoted faster initial (larval) growth of survivors. Given the strength of the 2003 year class, in spite of lower overall prey concentrations in 2003 than 2002 in the study area, our findings appear to emphasise the paramount importance of summer temperatures as the recruitment determinant in Baltic sprat
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    facet.materialart.
    Unbekannt
    In:  [Talk] In: ICES Annual Science Conference, 23.09, Halifax, Canada .
    Publikationsdatum: 2012-02-23
    Materialart: Conference or Workshop Item , NonPeerReviewed
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Publikationsdatum: 2012-02-23
    Materialart: Conference or Workshop Item , NonPeerReviewed
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    facet.materialart.
    Unbekannt
    In:  [Talk] In: OSF-Kolloquium zum Thema "Untersuchungen an Heringslarven in der westlichen Ostsee", 08.04, Rostock .
    Publikationsdatum: 2012-02-23
    Materialart: Conference or Workshop Item , NonPeerReviewed
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    Publikationsdatum: 2019-09-23
    Materialart: Article , NonPeerReviewed
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    Publikationsdatum: 2012-02-23
    Materialart: Conference or Workshop Item , NonPeerReviewed
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    facet.materialart.
    Unbekannt
    PANGAEA
    In:  IFM-GEOMAR Leibniz-Institute of Marine Sciences, Kiel University
    Publikationsdatum: 2023-03-09
    Schlagwort(e): AL236/2; AL236/2_527-CTD_34; Alkor (1990); Bottle number; CTD; CTD/Rosette; CTD-RO; DEPTH, water; Elevation of event; GG04_03b; Global Ocean Ecosystem Dynamics; GLOBEC; Latitude of event; Longitude of event; North Sea; NS0007; Salinity; Temperature, water
    Materialart: Dataset
    Format: text/tab-separated-values, 3 data points
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    facet.materialart.
    Unbekannt
    PANGAEA
    In:  IFM-GEOMAR Leibniz-Institute of Marine Sciences, Kiel University
    Publikationsdatum: 2023-07-10
    Schlagwort(e): Acarina; Acartia bifilosa; Acartia bifilosa, c1; Acartia bifilosa, c2; Acartia bifilosa, c3; Acartia bifilosa, c4; Acartia bifilosa, c5; Acartia bifilosa, female; Acartia bifilosa, male; Acartia clausi, c1; Acartia clausi, c2; Acartia clausi, c3; Acartia clausi, c4; Acartia clausi, c5; Acartia clausi, female; Acartia clausi, male; Acartia discaudata; Acartia longiremis; Acartia longiremis, c1; Acartia longiremis, c2; Acartia longiremis, c3; Acartia longiremis, c4; Acartia longiremis, c5; Acartia longiremis, female; Acartia longiremis, male; Acartia spp.; Acartia spp., nauplii; Acartia tonsa, c2; Acartia tonsa, c3; Acartia tonsa, c4; Acartia tonsa, c5; Acartia tonsa, female; Acartia tonsa, male; AL236/2; AL236/2_539-BONGO_72; Alkor (1990); Anomura; Appendicularia; Balanidae, cypris; Balanidae, nauplii; Bivalvia; Bivalvia, larvae; BONGO; Bongo net; Bosmina coregoni maritima; Brachyura; Bryozoa; Calanoides; Calanus finmarchicus; Calanus finmarchicus, c1; Calanus finmarchicus, c2; Calanus finmarchicus, c3; Calanus finmarchicus, c4; Calanus finmarchicus, c5; Calanus finmarchicus, female; Calanus finmarchicus, male; Candacia spp.; Caridea; Centropages hamatus; Centropages hamatus, c1; Centropages hamatus, c2; Centropages hamatus, c3; Centropages hamatus, c4; Centropages hamatus, c5; Centropages hamatus, female; Centropages hamatus, male; Centropages hamatus, nauplii; Centropages spp.; Centropages typicus; Centropages typicus, c1; Centropages typicus, c2; Centropages typicus, c3; Centropages typicus, c4; Centropages typicus, c5; Centropages typicus, female; Centropages typicus, male; Chaetognatha; Chordata; Cladocera; Coelenterata; Copepoda; Copepoda, eggs; Copepoda, egg sac; Copepoda, nauplii; Crangon allmanni, I-II; Crangon allmanni, III-IV; Crangon allmanni, V-VI; Crangon crangon, I-II; Crangon crangon, III-IV; Crangon crangon, V-VI; Crangonidae; Crangon spp., I-II; Crangon spp., V-VI; Ctenophora; Cumacea; Cyclopoida; DATE/TIME; Decapoda; Depth, bathymetric; Depth, bottom/max; Depth, top/min; DEPTH, water; Duration; Echinodermata; Euphausiacea; Eurytemora hirundoides, c3; Eurytemora hirundoides, c4; Eurytemora hirundoides, c5; Eurytemora hirundoides, female; Eurytemora hirundoides, male; Eurytemora spp.; Eurytemora spp., c1; Eurytemora spp., c2; Eurytemora spp., c3; Eurytemora spp., c4; Eurytemora spp., c5; Eurytemora spp., female; Eurytemora spp., male; Eurytemora spp., nauplii; Evadne nordmanni; Evadne spp.; Foraminifera, planktic; Fritillaria borealis; Fritillaria spp.; Gammaridae; Gastropoda; Gastropoda, larvae; GG04_03b; Global Ocean Ecosystem Dynamics; GLOBEC; Harpacticoida; Hydrozoa; Hyperiidae; Invertebrata, eggs; Invertebrata, larvae; Isias clavipes; Isopoda; LATITUDE; LONGITUDE; Metridia spp.; Microcalanus spp.; Mysidacea; Nematoda; Nemertea, larvae; North Sea; NS0015; Oikopleura spp.; Oithona similis; Oithona similis, c1; Oithona similis, c2; Oithona similis, c3; Oithona similis, c4; Oithona similis, c5; Oithona similis, female; Oithona similis, male; Oithona spp.; Oithona spp., c1; Oithona spp., c2; Oithona spp., c3; Oithona spp., c4; Oithona spp., c5; Oithona spp., female; Oithona spp., male; Ostracoda; Paguridae; Paracalanus parvus, c3; Paracalanus parvus, c4; Paracalanus parvus, c5; Paracalanus spp.; Paracalanus spp., c1; Paracalanus spp., c2; Paracalanus spp., c3; Paracalanus spp., c4; Paracalanus spp., c5; Paracalanus spp., female; Paracalanus spp., male; Penilia avirostris; Phoronida; Phyllopus spp.; Pisces, eggs; Pisces, larvae; Platyhelminthes; Podon, juvenile; Podon intermedius; Podon leucartii; Podon spp.; Polychaeta; Polychaeta, larvae; Pontellidae; Porcellanidae; Pseudocalanus spp.; Pseudocalanus spp., c1; Pseudocalanus spp., c2; Pseudocalanus spp., c3; Pseudocalanus spp., c4; Pseudocalanus spp., c5; Pseudocalanus spp., female; Pseudocalanus spp., male; Pseudocalanus spp., nauplii; Rotatoria; Rotatoria, eggs; Rotifera-Synchaeta; Sagitta spp.; Sample code/label; Siphonophora; Temora longicornis; Temora longicornis, c1; Temora longicornis, c2; Temora longicornis, c3; Temora longicornis, c4; Temora longicornis, c5; Temora longicornis, female; Temora longicornis, male; Temora longicornis, nauplii; Thaliacea; Thecosomata; Tomopteris spp.; Trochophora; Wire length; Zooplankton, gelatinous; Zooplankton indeterminata
    Materialart: Dataset
    Format: text/tab-separated-values, 210 data points
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...