ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2005-2009  (1)
  • 2008  (1)
Collection
Keywords
Language
Years
  • 2005-2009  (1)
Year
  • 1
    Publication Date: 2020-02-12
    Description: Seismic anisotropy was investigated by measuring shear-wave splitting at 19 broadband stations in Greenland. We examined mostly SKS and SKKS phases, but also some PKS and depth phases of SKS (e.g. pSKS, sSKS) for deep events. Splitting parameters (fast polarization and time delay) were determined for these phases. The fast polarizations at nine sites in southern Greenland are quite uniformly oriented about N–NE. Two sites in central northern Greenland show a similar geometry to southern Greenland. Similar fast polarizations in southern and central northern Greenland suggest continuity of structural fabric beneath large parts of Greenland. This coherent pattern extends across a number of geological provinces of varying age and suggests a common cause of anisotropy not related to the bitwise formation of the Greenland continental block. Four sites in an east–west oriented belt crossing central Greenland show varying fast polarizations and suggest a separate process causing the anisotropy there, which may indicate that these processes are not currently active. The overall pattern of anisotropy in our results, with the exception of variations across central Greenland, is similar to results obtained from Rayleigh waves. The irregular geometry of splitting across central Greenland may be related to the impact of the Iceland plume at ∼ 60 Ma. Reported splitting time delays range from 0.4 to 1.4 s with an average of 0.8 s, which can generally not be explained by crustal anisotropy alone. If confined to a lithosphere of thickness on the order of 100 km, time delays of up to 1.4 s indicate anisotropy of up to about 6%, assuming that the a crystallographic axis of olivine is preferentially contained in the horizontal plane. We suggest that the anisotropy beneath Greenland is located mainly in the upper mantle but some contributions from the crust and lower mantle may be present.
    Keywords: 550 - Earth sciences
    Language: English
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...