ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Launch Vehicles and Launch Operations  (4)
  • STRUCTURAL MECHANICS
  • 2005-2009  (4)
  • 1990-1994
  • 2007  (4)
  • 1
    Publication Date: 2019-08-13
    Description: The U.S. Vision for Space Exploration guides the National Aeronautics and Space Administration's (NASA's) challenging missions that expand humanity's boundaries and open new routes to the space frontier. With the Agency's commitment to complete the International Space Station (ISS) and to retire the venerable Space Shuttle by 2010, the NASA Administrator commissioned the Exploration Systems Architecture Study (ESAS) in 2005 to analyze options for safe, simple, cost-efficient launch solutions that could deliver human-rated space transportation capabilities in a timely manner within fixed budget guidelines. The Exploration Launch Projects (ELP) Office, chartered by the Constellation Program in October 2005, has been conducting systems engineering studies and business planning to successively refine the design configurations and better align vehicle concepts with customer and stakeholder requirements, such as significantly reduced life-cycle costs. As the Agency begins the process of replacing the Shuttle with a new generation of spacecraft destined for missions beyond low-Earth orbit to the Moon and Mars, NASA is designing the follow-on crew and cargo launch systems for maximum operational efficiencies. To sustain the long-term exploration of space, it is imperative to reduce the $4 billion NASA typically spends on space transportation each year. This paper gives toplevel information about how the follow-on Ares I Crew Launch Vehicle (CLV) is being designed for improved safety and reliability, coupled with reduced operations costs. These methods include carefully developing operational requirements; conducting operability design and analysis; using the latest information technology tools to design and simulate the vehicle; and developing a learning culture across the workforce to ensure a smooth transition between Space Shuttle operations and Ares vehicle development.
    Keywords: Launch Vehicles and Launch Operations
    Type: 54th Joint JANNAF Propulsion Conference; May 14, 2007 - May 17, 2007; Denver, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-08-13
    Description: In less than two years, the National Aeronautics and Space Administration (NASA) will launch the Ares I-X mission. This will be the first flight of the Ares I crew launch vehicle, which, together with the Ares V cargo launch vehicle, will eventually send humans to the Moon, Mars, and beyond. As the countdown to this first Ares mission continues, personnel from across the Ares I-X Mission Management Office (MMO) are finalizing designs and fabricating vehicle hardware for a 2009 launch. This paper will discuss the hardware and programmatic progress of the Ares I-X mission.
    Keywords: Launch Vehicles and Launch Operations
    Type: Joint Army-Navy-NASA-Air Force (JANNAF) Conference; May 14, 2007 - May 17, 2007; Denver, Co; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: The Ares I Crew Launch Vehicle (CLV) is being developed by the U.S. National Aeronautics and Space Administration (NASA) to provide crew access to the International Space Station (ISS) and, together with the Ares V Cargo Launch Vehicle (CaLV), serves as one component of a future launch capability for human exploration of the Moon. During the system requirements definition process and early design cycles, NASA defined and began implementing plans for integrated ground and flight testing necessary to achieve the first human launch of Ares I. The individual Ares I flight hardware elements: the first stage five segment booster (FSB), upper stage, and J-2X upper stage engine, will undergo extensive development, qualification, and certification testing prior to flight. Key integrated system tests include the Main Propulsion Test Article (MPTA), acceptance tests of the integrated upper stage and upper stage engine assembly, a full-scale integrated vehicle dynamic test (IVDT), aerodynamic testing to characterize vehicle performance, and integrated testing of the avionics and software components. The Ares I-X development flight test will provide flight data to validate engineering models for aerodynamic performance, stage separation, structural dynamic performance, and control system functionality. The Ares I-Y flight test will validate ascent performance of the first stage, stage separation functionality, and a highaltitude actuation of the launch abort system (LAS) following separation. The Orion-1 flight test will be conducted as a full, un-crewed, operational flight test through the entire ascent flight profile prior to the first crewed launch.
    Keywords: Launch Vehicles and Launch Operations
    Type: IAC-07-D2.6.04 , 58th International Astronautical Congress - IAC 2007; Sep 24, 2007 - Sep 28, 2007; Hyderabad; India
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: In accordance with the U.S. Vision for Space Exploration and the nation's desire to again send humans to explore beyond Earth orbit, NASA has been tasked to send human beings to the moon, Mars, and beyond. It has been 30 years since the United States last designed and built a human-rated launch vehicle. NASA is now building the Ares I crew launch vehicle, which will loft the Orion crew exploration vehicle into orbit, and the Ares V cargo launch vehicle, which will launch the Lunar Surface Access Module and Earth departure stage to rendezvous Orion for missions to the moon. NASA has marshaled unique resources from the government and private sectors to perform the technically and programmatically complex work of delivering astronauts to orbit early next decade, followed by heavy cargo late next decade. Our experiences with Saturn and the Shuttle have taught us the value of adhering to sound systems engineering, such as the "test as you fly" principle, while applying aerospace best practices and lessons learned. If we are to fly humans safely aboard a launch vehicle, we must employ a variety of methodologies to reduce the technical, schedule, and cost risks inherent in the complex business of space transportation. During the Saturn development effort, NASA conducted multiple demonstration and verification flight tests to prove technology in its operating environment before relying upon it for human spaceflight. Less testing on the integrated Shuttle system did not reduce cost or schedule. NASA plans a progressive series of demonstration (ascent), verification (orbital), and mission flight tests to supplement ground research and high-altitude subsystem testing with real-world data, factoring the results of each test into the next one. In this way, sophisticated analytical models and tools, many of which were not available during Saturn and Shuttle, will be calibrated and we will gain confidence in their predictions, as we gain hands-on experience in operating the first of two new launch vehicle systems. The Ares I-1 flight test vehicle (FTV) will incorporate a mix of flight and mockup hardware, reflecting a configuration similar in mass, weight, and shape (outer mold line or OML) to the operational vehicle. It will be powered by a four-segment reusable solid rocket booster (RSRB), which is currently in Shuttle inventory, and will be modified to include a fifth, inert segment that makes it approximately the same size and weight as the five segment RSRB, which will be available for the second flight test in 2012. The Ares I-1 vehicle configuration is shown. Each test flight has specific objectives appropriate to the design analysis cycle in progress. The Ares I-1 demonstration test, slated for April 2009, gives NASA its first opportunity to gather critical data about the flight dynamics of the integrated launch vehicle stack, understand how to control its roll during flight, and other characterize the severe stage separation environment that the upper stage will experience during future operational flights. NASA also will begin the process of modifying the launch infrastructure and fine-tuning ground and mission operational scenarios, as NASA transitions from the Shuttle to the Ares/Orion system.
    Keywords: Launch Vehicles and Launch Operations
    Type: AIAA Joint Propulsion Conference; Jul 08, 2007 - Jul 11, 2007; Cincnnati, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...