ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2007-09-01
    Description: Cell-cell contacts are fundamental to multicellular organisms and are subject to exquisite levels of control. Human RPTPmu is a type IIB receptor protein tyrosine phosphatase that both forms an adhesive contact itself and is involved in regulating adhesion by dephosphorylating components of cadherin-catenin complexes. Here we describe a 3.1 angstrom crystal structure of the RPTPmu ectodomain that forms a homophilic trans (antiparallel) dimer with an extended and rigid architecture, matching the dimensions of adherens junctions. Cell surface expression of deletion constructs induces intercellular spacings that correlate with the ectodomain length. These data suggest that the RPTPmu ectodomain acts as a distance gauge and plays a key regulatory function, locking the phosphatase to its appropriate functional location.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Aricescu, A Radu -- Siebold, Christian -- Choudhuri, Kaushik -- Chang, Veronica T -- Lu, Weixian -- Davis, Simon J -- van der Merwe, P Anton -- Jones, E Yvonne -- 081894/Wellcome Trust/United Kingdom -- G9722488/Medical Research Council/United Kingdom -- G9900061/Medical Research Council/United Kingdom -- New York, N.Y. -- Science. 2007 Aug 31;317(5842):1217-20.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cancer Research UK Receptor Structure Research Group, University of Oxford, Henry Wellcome Building of Genomic Medicine, Division of Structural Biology, Roosevelt Drive, Oxford OX3 7BN, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17761881" target="_blank"〉PubMed〈/a〉
    Keywords: Adherens Junctions/chemistry/*physiology/ultrastructure ; Amino Acid Sequence ; Cell Adhesion ; Cell Adhesion Molecules/*chemistry/metabolism ; Cell Membrane/chemistry/enzymology ; Conserved Sequence ; Dimerization ; Fibronectins/chemistry ; Humans ; Hydrogen Bonding ; Hydrogen-Ion Concentration ; Hydrophobic and Hydrophilic Interactions ; Immunoglobulins/chemistry ; Models, Molecular ; Molecular Sequence Data ; Mutagenesis, Site-Directed ; Protein Structure, Tertiary ; Protein Tyrosine Phosphatases/*chemistry/genetics/*metabolism ; Receptor-Like Protein Tyrosine Phosphatases, Class 2
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...