ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2005-2009  (3)
  • 2007  (3)
Collection
Years
  • 2005-2009  (3)
Year
  • 1
    Publication Date: 2007-09-01
    Description: The restratification of the oceanic surface mixed layer that results from lateral gradients in the surface density field is studied. The lateral gradients are shown to be unstable to ageostrophic baroclinic instabilities and slump from the horizontal to the vertical. These instabilities, which are referred to as mixed layer instabilities (MLIs), differ from instabilities in the ocean interior because of the weak surface stratification. Spatial scales are O(1–10) km, and growth time scales are on the order of a day. Linear stability analysis and fully nonlinear simulations are used to study MLIs and their impact on mixed layer restratification. The main result is that MLIs are a leading-order process in the ML heat budget acting to constantly restratify the surface ocean. Climate and regional ocean models do not resolve the scales associated with MLIs and are likely to underestimate the rate of ML restratification and consequently suffer from a bias in sea surface temperatures and ML depths. In a forthcoming paper, the authors discuss a parameterization scheme to include the effect of MLIs in ocean models.
    Print ISSN: 0022-3670
    Electronic ISSN: 1520-0485
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Sears Foundation for Marine Research
    Publication Date: 2022-05-25
    Description: Author Posting. © Sears Foundation for Marine Research, 2004. This article is posted here by permission of Sears Foundation for Marine Research for personal use, not for redistribution. The definitive version was published in Journal of Marine Research 62 (2004): 195-232, doi:10.1357/002224004774201690.
    Description: Using boundary-enhanced viscosity to control the mean circulation, a simple model can be created and used for study of strong inertial effects in a western-intensified calculation. The simplicity allows for a greater number of strongly-inertial numerical experiments than computationally feasible in a general circulation model. This paper is an introduction to the behavior of this model, covering its general features. Some of the inertial phenomena, including the primary balances of the boundary current and basin interior, the temporal behavior, and the changes in the mean state across parameter space are presented. The analysis of these phenomena focuses on the effects of eddies and the type of eddies present. The low interior viscosity allows for more pronounced eddy effects. As this model is intended for use in future studies, many of the diagnostic tools found to be useful here are likely to be reused effectively.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: 2199269 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-25
    Description: Author Posting. © Sears Foundation for Marine Research, 2004. This article is posted here by permission of Sears Foundation for Marine Research for personal use, not for redistribution. The definitive version was published in Journal of Marine Research 62 (2004): 169-193, doi:10.1357/002224004774201681.
    Description: It is well known that the barotropic, wind-driven, single-gyre ocean model reaches an inertially-dominated equilibrium with unrealistic circulation strength when the explicit viscosity is reduced to realistically low values. It is shown here that the overall circulation strength can be controlled nonlocally by retaining thin regions of enhanced viscosity parameterizing the effects of increased mixing and topographic interaction near the boundaries. The control is possible even when the inertial boundary layer width is larger than the enhanced viscosity region, as eddy fluxes of vorticity from the interior transport vorticity across the mean streamlines of the inertial boundary current to the frictional region. In relatively inviscid calculations the eddies are the major means of flux across interior mean streamlines.
    Description: B.F.-K. was supported in part by an ONR-supported NDSEG Fellowship, an MIT Presidential Fellowship, a GFDL/Princeton University postdoctoral fellowship, and a NOAA Climate and Global Change postdoctoral fellowship (managed by UCAR). Both authors were supported in part by NSF OCE 9910654.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: 753053 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...