ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Amino Acid Sequence  (43)
  • Meteorology and Climatology  (38)
  • 2005-2009  (81)
  • 1950-1954
  • 2007  (81)
  • 1
    Publication Date: 2019-07-12
    Description: The Mixed-Phase Arctic Cloud Experiment (M-PACE) was conducted September 27 through October 22, 2004 on the North Slope of Alaska. The primary objective was to collect a data set suitable to study interactions between microphysics, dynamics and radiative transfer in mixed-phase Arctic clouds. Observations taken during the 1997/1998 Surface Heat and Energy Budget of the Arctic (SHEBA) experiment revealed that Arctic clouds frequently consist of one (or more) liquid layers precipitating ice. M-PACE sought to investigate the physical processes of these clouds utilizing two aircraft (an in situ aircraft to characterize the microphysical properties of the clouds and a remote sensing aircraft to constraint the upwelling radiation) over the Department of Energy s Atmospheric Radiation Measurement (ARM) Climate Research Facility (ACRF) on the North Slope of Alaska. The measurements successfully documented the microphysical structure of Arctic mixed-phase clouds, with multiple in situ profiles collected in both single-layer and multi-layer clouds over two ground-based remote sensing sites. Liquid was found in clouds with temperatures down to -30 C, the coldest cloud top temperature below -40 C sampled by the aircraft. Remote sensing instruments suggest that ice was present in low concentrations, mostly concentrated in precipitation shafts, although there are indications of light ice precipitation present below the optically thick single-layer clouds. The prevalence of liquid down to these low temperatures could potentially be explained by the relatively low measured ice nuclei concentrations.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2007-09-29
    Description: The genome of the eukaryotic protist Giardia lamblia, an important human intestinal parasite, is compact in structure and content, contains few introns or mitochondrial relics, and has simplified machinery for DNA replication, transcription, RNA processing, and most metabolic pathways. Protein kinases comprise the single largest protein class and reflect Giardia's requirement for a complex signal transduction network for coordinating differentiation. Lateral gene transfer from bacterial and archaeal donors has shaped Giardia's genome, and previously unknown gene families, for example, cysteine-rich structural proteins, have been discovered. Unexpectedly, the genome shows little evidence of heterozygosity, supporting recent speculations that this organism is sexual. This genome sequence will not only be valuable for investigating the evolution of eukaryotes, but will also be applied to the search for new therapeutics for this parasite.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Morrison, Hilary G -- McArthur, Andrew G -- Gillin, Frances D -- Aley, Stephen B -- Adam, Rodney D -- Olsen, Gary J -- Best, Aaron A -- Cande, W Zacheus -- Chen, Feng -- Cipriano, Michael J -- Davids, Barbara J -- Dawson, Scott C -- Elmendorf, Heidi G -- Hehl, Adrian B -- Holder, Michael E -- Huse, Susan M -- Kim, Ulandt U -- Lasek-Nesselquist, Erica -- Manning, Gerard -- Nigam, Anuranjini -- Nixon, Julie E J -- Palm, Daniel -- Passamaneck, Nora E -- Prabhu, Anjali -- Reich, Claudia I -- Reiner, David S -- Samuelson, John -- Svard, Staffan G -- Sogin, Mitchell L -- AI42488/AI/NIAID NIH HHS/ -- AI43273/AI/NIAID NIH HHS/ -- AI51687/AI/NIAID NIH HHS/ -- R01 AI043273/AI/NIAID NIH HHS/ -- R01 AI048082/AI/NIAID NIH HHS/ -- R01 HG004164/HG/NHGRI NIH HHS/ -- R01 HG004164-01/HG/NHGRI NIH HHS/ -- New York, N.Y. -- Science. 2007 Sep 28;317(5846):1921-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Marine Biological Laboratory, Woods Hole, MA 02543-1015, USA. morrison@mbl.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17901334" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; *Biological Evolution ; DNA Replication/genetics ; *Eukaryotic Cells ; Gene Transfer, Horizontal ; Genes, Protozoan ; *Genome, Protozoan ; Genomics ; Giardia lamblia/classification/*genetics/physiology ; Metabolic Networks and Pathways/genetics ; Molecular Sequence Data ; Phylogeny ; Protein Kinases/genetics/metabolism ; Protozoan Proteins/chemistry/genetics/metabolism ; RNA Processing, Post-Transcriptional ; Signal Transduction ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2007-10-13
    Description: Theory suggests it should be difficult for asexual organisms to adapt to a changing environment because genetic diversity can only arise from mutations accumulating within direct antecedents and not through sexual exchange. In an asexual microinvertebrate, the bdelloid rotifer, we have observed a mechanism by which such organisms could acquire the diversity needed for adaptation. Gene copies most likely representing former alleles have diverged in function so that the proteins they encode play complementary roles in survival of dry conditions. One protein prevents desiccation-sensitive enzymes from aggregating during drying, whereas its counterpart does not have this activity, but is able to associate with phospholipid bilayers and is potentially involved in maintenance of membrane integrity. The functional divergence of former alleles observed here suggests that adoption of asexual reproduction could itself be an evolutionary mechanism for the generation of diversity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pouchkina-Stantcheva, Natalia N -- McGee, Brian M -- Boschetti, Chiara -- Tolleter, Dimitri -- Chakrabortee, Sohini -- Popova, Antoaneta V -- Meersman, Filip -- Macherel, David -- Hincha, Dirk K -- Tunnacliffe, Alan -- New York, N.Y. -- Science. 2007 Oct 12;318(5848):268-71.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Biotechnology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QT, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17932297" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptation, Biological ; *Alleles ; Amino Acid Sequence ; Animals ; Biological Evolution ; Chromosomes/genetics ; DNA, Complementary ; Dehydration ; Gene Dosage ; *Genes, Helminth ; *Genetic Variation ; Helminth Proteins/chemistry/genetics/*physiology ; Lipid Bilayers ; Molecular Sequence Data ; Protein Structure, Secondary ; *Reproduction, Asexual ; Rotifera/*genetics/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2007-01-06
    Description: Wilms tumor is a pediatric kidney cancer associated with inactivation of the WT1 tumor-suppressor gene in 5 to 10% of cases. Using a high-resolution screen for DNA copy-number alterations in Wilms tumor, we identified somatic deletions targeting a previously uncharacterized gene on the X chromosome. This gene, which we call WTX, is inactivated in approximately one-third of Wilms tumors (15 of 51 tumors). Tumors with mutations in WTX lack WT1 mutations, and both genes share a restricted temporal and spatial expression pattern in normal renal precursors. In contrast to biallelic inactivation of autosomal tumor-suppressor genes, WTX is inactivated by a monoallelic "single-hit" event targeting the single X chromosome in tumors from males and the active X chromosome in tumors from females.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rivera, Miguel N -- Kim, Woo Jae -- Wells, Julie -- Driscoll, David R -- Brannigan, Brian W -- Han, Moonjoo -- Kim, James C -- Feinberg, Andrew P -- Gerald, William L -- Vargas, Sara O -- Chin, Lynda -- Iafrate, A John -- Bell, Daphne W -- Haber, Daniel A -- P01-CA101942/CA/NCI NIH HHS/ -- R37 CA054358/CA/NCI NIH HHS/ -- R37 CA054358-17/CA/NCI NIH HHS/ -- R37-CA058596/CA/NCI NIH HHS/ -- T32-CA009216/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2007 Feb 2;315(5812):642-5. Epub 2007 Jan 4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Massachusetts General Hospital Cancer Center, Harvard Medical Center, Boston, MA 02114, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17204608" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Proteins, Signal Transducing ; Alleles ; Amino Acid Sequence ; Animals ; Cell Line ; Chromosome Deletion ; Chromosomes, Human, X/*genetics ; Female ; Gene Expression ; *Gene Silencing ; *Genes, Wilms Tumor ; Heterozygote ; Humans ; In Situ Hybridization, Fluorescence ; Kidney/embryology/metabolism ; Kidney Neoplasms/*genetics ; Male ; Mice ; Mice, Inbred C57BL ; Molecular Sequence Data ; Mutation ; Point Mutation ; Tumor Suppressor Proteins/chemistry/*genetics/physiology ; Wilms Tumor/*genetics ; beta Catenin/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2007-09-22
    Description: Free-solution, label-free molecular interactions were investigated with back-scattering interferometry in a simple optical train composed of a helium-neon laser, a microfluidic channel, and a position sensor. Molecular binding interactions between proteins, ions and protein, and small molecules and protein, were determined with high dynamic range dissociation constants (Kd spanning six decades) and unmatched sensitivity (picomolar Kd's and detection limits of 10,000s of molecules). With this technique, equilibrium dissociation constants were quantified for protein A and immunoglobulin G, interleukin-2 with its monoclonal antibody, and calmodulin with calcium ion Ca2+, a small molecule inhibitor, the protein calcineurin, and the M13 peptide. The high sensitivity of back-scattering interferometry and small volumes of microfluidics allowed the entire calmodulin assay to be performed with 200 picomoles of solute.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bornhop, Darryl J -- Latham, Joey C -- Kussrow, Amanda -- Markov, Dmitry A -- Jones, Richard D -- Sorensen, Henrik S -- R-01 EB0003537-01A2/EB/NIBIB NIH HHS/ -- T32 GM065086/GM/NIGMS NIH HHS/ -- T32-EY07135/EY/NEI NIH HHS/ -- New York, N.Y. -- Science. 2007 Sep 21;317(5845):1732-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, Vanderbilt Institute of Chemical Biology, Vanderbilt University, VU Station B 351822, Nashville, TN 37235-1822, USA. darryl.bornhop@vanderbilt.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17885132" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Calcineurin/chemistry ; Calcium/chemistry ; Calmodulin/chemistry ; Dimethylpolysiloxanes ; Humans ; Immunoglobulin G/chemistry ; Interferometry/*methods ; Kinetics ; Molecular Sequence Data ; Myosin-Light-Chain Kinase/chemistry ; Peptide Fragments/chemistry ; *Protein Binding ; Rabbits ; Refractometry ; Silicones ; Solutions
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2007-12-15
    Description: RNA polymerase II (Pol II) transcribes genes that encode proteins and noncoding small nuclear RNAs (snRNAs). The carboxyl-terminal repeat domain (CTD) of the largest subunit of mammalian RNA Pol II, comprising tandem repeats of the heptapeptide consensus Tyr1-Ser2-Pro3-Thr4-Ser5-Pro6-Ser7, is required for expression of both gene types. We show that mutation of serine-7 to alanine causes a specific defect in snRNA gene expression. We also present evidence that phosphorylation of serine-7 facilitates interaction with the snRNA gene-specific Integrator complex. These findings assign a biological function to this amino acid and highlight a gene type-specific requirement for a residue within the CTD heptapeptide, supporting the existence of a CTD code.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2263945/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2263945/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Egloff, Sylvain -- O'Reilly, Dawn -- Chapman, Rob D -- Taylor, Alice -- Tanzhaus, Katrin -- Pitts, Laura -- Eick, Dirk -- Murphy, Shona -- 072107/Wellcome Trust/United Kingdom -- 081312/Wellcome Trust/United Kingdom -- G0400653/Medical Research Council/United Kingdom -- G0400653(71330)/Medical Research Council/United Kingdom -- G9826944/Medical Research Council/United Kingdom -- Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 2007 Dec 14;318(5857):1777-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18079403" target="_blank"〉PubMed〈/a〉
    Keywords: Alanine ; Amino Acid Sequence ; Cell Line ; Consensus Sequence ; *Gene Expression Regulation ; Heterogeneous-Nuclear Ribonucleoproteins/genetics ; Humans ; Mutation ; Oligopeptides/chemistry/metabolism ; Phosphorylation ; Protein Structure, Tertiary ; Protein Subunits/genetics/metabolism ; RNA Polymerase II/chemistry/genetics/*metabolism ; RNA Processing, Post-Transcriptional ; RNA, Messenger/genetics/metabolism ; RNA, Small Nuclear/*genetics ; Serine/*metabolism ; Templates, Genetic ; *Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2007-05-26
    Description: Mutations affecting the BRCT domains of the breast cancer-associated tumor suppressor BRCA1 disrupt the recruitment of this protein to DNA double-strand breaks (DSBs). The molecular structures at DSBs recognized by BRCA1 are presently unknown. We report the interaction of the BRCA1 BRCT domain with RAP80, a ubiquitin-binding protein. RAP80 targets a complex containing the BRCA1-BARD1 (BRCA1-associated ring domain protein 1) E3 ligase and the deubiquitinating enzyme (DUB) BRCC36 to MDC1-gammaH2AX-dependent lysine(6)- and lysine(63)-linked ubiquitin polymers at DSBs. These events are required for cell cycle checkpoint and repair responses to ionizing radiation, implicating ubiquitin chain recognition and turnover in the BRCA1-mediated repair of DSBs.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2706583/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2706583/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sobhian, Bijan -- Shao, Genze -- Lilli, Dana R -- Culhane, Aedin C -- Moreau, Lisa A -- Xia, Bing -- Livingston, David M -- Greenberg, Roger A -- K08 CA106597/CA/NCI NIH HHS/ -- K08 CA106597-01A2/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2007 May 25;316(5828):1198-202.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Dana-Farber Cancer Institute and Department of Genetics and Department of Medicine, Harvard Medical School, 44 Binney Street, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17525341" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; BRCA1 Protein/*metabolism ; Binding Sites ; Carrier Proteins/*metabolism ; Cell Line ; DNA/*metabolism ; *DNA Breaks, Double-Stranded ; DNA Repair/physiology ; HeLa Cells ; Humans ; Mice ; Molecular Sequence Data ; Nuclear Proteins/*metabolism ; Nucleic Acid Conformation ; Protein Structure, Tertiary ; Tumor Suppressor Proteins/metabolism ; Ubiquitin/*metabolism ; Ubiquitin-Protein Ligases/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2007-11-17
    Description: Cells respond to DNA double-strand breaks by recruiting factors such as the DNA-damage mediator protein MDC1, the p53-binding protein 1 (53BP1), and the breast cancer susceptibility protein BRCA1 to sites of damaged DNA. Here, we reveal that the ubiquitin ligase RNF8 mediates ubiquitin conjugation and 53BP1 and BRCA1 focal accumulation at sites of DNA lesions. Moreover, we establish that MDC1 recruits RNF8 through phosphodependent interactions between the RNF8 forkhead-associated domain and motifs in MDC1 that are phosphorylated by the DNA-damage activated protein kinase ataxia telangiectasia mutated (ATM). We also show that depletion of the E2 enzyme UBC13 impairs 53BP1 recruitment to sites of damage, which suggests that it cooperates with RNF8. Finally, we reveal that RNF8 promotes the G2/M DNA damage checkpoint and resistance to ionizing radiation. These results demonstrate how the DNA-damage response is orchestrated by ATM-dependent phosphorylation of MDC1 and RNF8-mediated ubiquitination.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2430610/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2430610/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kolas, Nadine K -- Chapman, J Ross -- Nakada, Shinichiro -- Ylanko, Jarkko -- Chahwan, Richard -- Sweeney, Frederic D -- Panier, Stephanie -- Mendez, Megan -- Wildenhain, Jan -- Thomson, Timothy M -- Pelletier, Laurence -- Jackson, Stephen P -- Durocher, Daniel -- A5290/Cancer Research UK/United Kingdom -- New York, N.Y. -- Science. 2007 Dec 7;318(5856):1637-40. Epub 2007 Nov 15.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto M5G1X5, Ontario, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18006705" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Amino Acid Sequence ; Ataxia Telangiectasia Mutated Proteins ; BRCA1 Protein/metabolism ; Cell Cycle Proteins/metabolism ; Cell Line, Tumor ; Cell Nucleus Structures/*genetics ; *DNA Breaks, Double-Stranded ; DNA Repair ; DNA-Binding Proteins/chemistry/*metabolism ; HeLa Cells ; Humans ; Intracellular Signaling Peptides and Proteins/metabolism ; Molecular Sequence Data ; Nuclear Proteins/chemistry/metabolism ; Phosphorylation ; Protein Structure, Tertiary ; Protein-Serine-Threonine Kinases/metabolism ; RNA, Small Interfering ; Trans-Activators/chemistry/metabolism ; Tumor Suppressor Proteins/metabolism ; Ubiquitin/metabolism ; Ubiquitin-Conjugating Enzymes/metabolism ; Ubiquitin-Protein Ligases/*metabolism ; Ubiquitination
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2007-01-20
    Description: Cysteine (Cys) residues often play critical roles in proteins; however, identification of their specific functions has been limited to case-by-case experimental approaches. We developed a procedure for high-throughput identification of catalytic redox-active Cys in proteins by searching for sporadic selenocysteine-Cys pairs in sequence databases. This method is independent of protein family, structure, and taxon. We used it to selectively detect the majority of known proteins with redox-active Cys and to make additional predictions, one of which was verified. Rapid accumulation of sequence information from genomic and metagenomic projects should allow detection of many additional oxidoreductase families as well as identification of redox-active Cys in these proteins.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Fomenko, Dmitri E -- Xing, Weibing -- Adair, Blakely M -- Thomas, David J -- Gladyshev, Vadim N -- AG021518/AG/NIA NIH HHS/ -- GM061603/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2007 Jan 19;315(5810):387-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, University of Nebraska, Lincoln, NE 68588, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17234949" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Amino Acid Sequence ; Animals ; Archaeal Proteins/chemistry ; Bacterial Proteins/chemistry ; Base Sequence ; Catalysis ; Computational Biology ; Cysteine/analysis/*chemistry ; *Databases, Nucleic Acid ; *Databases, Protein ; Enzymes/*chemistry ; Eukaryotic Cells ; Evolution, Molecular ; Methyltransferases/chemistry ; Molecular Sequence Data ; Oxidation-Reduction ; Oxidoreductases/chemistry ; Proteins/*chemistry ; Selenocysteine/chemistry ; Selenoproteins/*chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2007-04-07
    Description: Inositol pyrophosphates are a diverse group of high-energy signaling molecules whose cellular roles remain an active area of study. We report a previously uncharacterized class of inositol pyrophosphate synthase and find it is identical to yeast Vip1 and Asp1 proteins, regulators of actin-related protein-2/3 (ARP 2/3) complexes. Vip1 and Asp1 acted as enzymes that encode inositol hexakisphosphate (IP6) and inositol heptakisphosphate (IP7) kinase activities. Alterations in kinase activity led to defects in cell growth, morphology, and interactions with ARP complex members. The functionality of Asp1 and Vip1 may provide cells with increased signaling capacity through metabolism of IP6.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mulugu, Sashidhar -- Bai, Wenli -- Fridy, Peter C -- Bastidas, Robert J -- Otto, James C -- Dollins, D Eric -- Haystead, Timothy A -- Ribeiro, Anthony A -- York, John D -- 2-P30-CA14236-3/CA/NCI NIH HHS/ -- P30-CA-14236/CA/NCI NIH HHS/ -- R01-HL-55672/HL/NHLBI NIH HHS/ -- R33-DK-070272/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 2007 Apr 6;316(5821):106-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Department of Pharmacology and Cancer Biology, Duke University Medical Center, DUMC 3813, Durham, NC 27710, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17412958" target="_blank"〉PubMed〈/a〉
    Keywords: Actin-Related Protein 3/metabolism ; Amino Acid Sequence ; Animals ; Catalytic Domain ; Chromatography, High Pressure Liquid ; Conserved Sequence ; Cytoskeletal Proteins/chemistry/genetics/isolation & purification/*metabolism ; Humans ; Inositol Phosphates/metabolism ; Molecular Sequence Data ; Phosphorylation ; Phosphotransferases (Phosphate Group Acceptor)/chemistry/genetics/isolation & ; purification/*metabolism ; Phytic Acid/*metabolism ; Protein Structure, Tertiary ; Recombinant Fusion Proteins/chemistry/isolation & purification/metabolism ; Saccharomyces cerevisiae/*enzymology/genetics ; Saccharomyces cerevisiae Proteins/chemistry/genetics/isolation & ; purification/metabolism ; Schizosaccharomyces/cytology/*enzymology/genetics/growth & development ; Schizosaccharomyces pombe Proteins/chemistry/genetics/isolation & ; purification/*metabolism ; *Sequence Alignment ; Substrate Specificity ; Temperature
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...