ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-13
    Description: We presented self-consistent disk models of T Tauri stars that include a parameterized treatment of dust settling and grain growth, building on techniques developed in a series of papers by D'Alessio et al. The models incorporate depleted distributions of dust in upper disk layers along with larger sized particles near the disk midplane, which are expected theoretically and, as we suggested earlier, are necessary to account for millimeter-wave emission, SEDs, scattered light images, and silicate emission features simultaneously. By comparing the models with recent mid- and near-IR observations, we find that the dust-to-gas mass ratio of small grains at the upper layers should be less than 10% of the standard value. The grains that have disappeared from the upper layers increase the dust-to-gas mass ratio of the disk interior; if those grains grow to maximum sizes of the order of millimeters during the settling process, then both the millimeter-wave fluxes and spectral slopes can be consistently explained. Depletion and growth of grains can also enhance the ionization of upper layers, increasing the possibility of the magnetorotational instability for driving disk accretion.
    Keywords: Astronomy
    Type: The Astrophysical Journal; 638; 1; 314-335
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: Observations of T Tauri stars and young brown dwarfs suggest that the accretion rates of their disks scales roughly with the square of the central stellar mass. No dependence of accretion rate on stellar mass is predicted by the simplest version of the Gammie layered disk model, in which nonthermal ionization of upper disk layers allows accretion to occur via the magnetorotational instability. We show that a minor modification of Gaminie's model to include heating by irradiation from the central star yields a modest dependence of accretion on the mass of the central star. A purely viscous disk model could provide a strong dependence of accretion rate on stellar mass if the initial disk radius (before much viscous evolution has occurred) has a strong dependence on stellar mass. However, it is far from clear that at least the most massive pre-main-sequence disks can be totally magnetically activated by X-rays or cosmic rays. We suggest that a combination of effects are responsible for the observed dependence, with the lowest mass stars having the lowest mass disks, which can be thoroughly magnetically active, while the higher mass stars have higher mass disks that have layered accret,ion and relatively inactive or "dead" central zones at some radii. In such dead zones, we suggest that gravitational instabilities may play a role in allowing accretion to proceed. In this connection, we emphasize the uncertainty in disk masses derived from dust emission and argue that T Tauri disk masses have been systematically underestimated by conventional analyses. Furtlier study of accretion rates, especially in the lowest mass stars, would help to clarify the mechanisms of accretion in T Tauri stars.
    Keywords: Astronomy
    Type: The Astrophysical Journal; 648; 1; 484-490
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: We presented the results of an infrared imaging survey of Tr 37 and NGC 7160 using the IRAC and MIPS instruments on board the Spitzer Space Telescope. Our observations cover the wavelength range from 3.6 to 24 microns, allowing us to detect disk emission over a typical range of radii 0.1 to 20 AU from the central star. In Tr 37, with an age of about 4 Myr, about 48% of the low-mass stars exhibit detectable disk emission in the IRAC bands. Roughly 10% of the stars with disks may be "transition" objects, with essentially photospheric fluxes at wavelengths i 4.5 microns but with excesses at longer wavelengths, indicating an optically thin inner disk. The median optically thick disk emission in Tr 37 is lower than the corresponding median for stars in the younger Taurus region; the decrease in infrared excess is larger at 6-8 microns than at 24 microns, suggesting that grain growth and/or dust settling has proceeded faster at smaller disk radii, as expected on general theoretical grounds. Only about 4% of the low-mass stars in the 10 Myr old cluster NGC 7160 show detectable infrared disk emission. We also find evidence for 24 micron excesses around a few intermediate-mass stars, which may represent so-called "debris disk" systems. Our observations provided new constraints on disk evolution through an important age range.
    Keywords: Astronomy
    Type: The Astrophysical Journal; 638; 897-919
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...