ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Q11
  • Astronomy
  • J24
  • 2005-2009  (2)
  • 2005  (2)
Collection
Keywords
Years
  • 2005-2009  (2)
Year
  • 1
    Publication Date: 2019-07-13
    Description: We presented Spitzer Infrared Spectrograph (IRS) observations of two objects of the Taurus population that show unambiguous signs of clea,ring in their inner disks. In one of the objects, DM Tau, the outer disk is truncated at 3 AU; this object is akin to another recently reported in Taurus, CoKu Tau/4, in that the inner disk region is free of small dust. Unlike CoKu Tau/4, however, this star is still accreting, so optically thin gas should still remain in the inner disk region. The other object, GM Aur, also accreting, has about 0.02 lunar masses of small dust in the inner disk region within about 5 AU, consistent with previous reports. However, the IRS spectrum clearly shows that the optically thick outer disk has an inner truncation at a much larger radius than previously suggested, of order 24 AU. These observations provide strong evidence for the presence of gaps in protoplanetary disks.
    Keywords: Astronomy
    Type: The Astrophysical Journal; 630; 2; L185 - L188
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: We presented the infrared spectrum of the young binary system St 34 obtained with the Infrared Spectrograph (IRS) on the Spitzer Space Telescope. The IRS spectrum clearly shows excess dust emission, consistent with the suggestion of White & Hillenbrand that St 34 is accreting from a circumbinary disk. The disk emission of St 34 is low in comparison with the levels observed in typical T Tauri stars; silicate features at 10 and 20 microns are much weaker than typically seen in T Tauri stars; and excess emission is nearly absent at the shortest wavelengths observed. These features of the infrared spectrum suggest substantial grain growth (to eliminate silicate features) and possible settling of dust to the disk midplane (to reduce the continuum excess emission levels), along with a relatively evacuated inner disk, as expected due to gravitational perturbations by the binary system. Although the position of St 34 in the H-R diagram suggests an age of 8f Myr, assuming that it lies at the distance of the Taurus-Auriga molecular clouds, White & Hillenbrand could not detect any Li I absorption, which would indicate a Li depletion age of roughly 25 Myr or more. We suggest that St 34 is closer than the Taurus clouds by about 30-40 pc and has an age roughly consistent with Li depletion models. Such an advanced age would make St 34 the oldest known low-mass pre-main-sequence object with a dusty accretion disk. The persistence of optically thick dust emission well outside the binary orbit may indicate a failure to make giant planets that could effectively remove dust particles.
    Keywords: Astronomy
    Type: The Astrophysical Journal; 628; 2; L147 - L150
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...