ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Blackwell Science Ltd  (1)
  • International Union of Crystallography
  • American Meteorological Society (AMS)
  • 2000-2004  (2)
  • 2002  (2)
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Molecular microbiology 44 (2002), S. 0 
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: Spo0A~P is the essential response regulator and transcription factor for sporulation initiation in Bacillus subtilis. The phosphorylation level of Spo0A in the cell is determined by the sensor kinase activity of the phosphorelay, donating phosphoryl groups, and the antagonistic effects of dephosphorylation mediated by the Rap and Spo0E families of phosphatases. In this study, spo0A mutations were generated that encoded proteins less sensitive to the activity of Spo0E than the wild-type protein. The Spo0A substitutions N12K, P60S, L62P and F88L are surface exposed and localize to the same face of the molecule as the active site and in its close proximity on the β1–α1, β3–α3 and β4–α4 loops. The corresponding surface in the Spo0F response regulator was shown previously to be involved in the interaction with the RapB phosphatase, as well as the KinA histidine kinase and the Spo0B phosphotransferase. Thus, residues occupying the same position (N12:Q12, F88:Y84) and the same loops in Spo0A or Spo0F are involved in the interaction with the structurally unrelated Spo0E and RapB phosphatases, respectively, in addition to kinases and phosphotransferase. The specificity in phosphatase target recognition must be the result of side-chain variability within the response regulators and the interactions they promote. The residues involved in Spo0E interaction are identical in all Spo0A orthologues from spore-forming Bacilli encoding Spo0E phosphatases.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2002-07-18
    Description: The International Union of Crystallography (IUCr) Commission on Powder Diffraction (CPD) has sponsored a round robin on the determination of quantitative phase abundance from diffraction data. The aims of the round robin have been detailed by Madsenet al.[J. Appl. Cryst.(2001),34, 409–426]. In summary, they were (i) to document the methods and strategies commonly employed in quantitative phases analysis (QPA), especially those involving powder diffraction, (ii) to assess levels of accuracy, precision and lower limits of detection, (iii) to identify specific problem areas and develop practical solutions, (iv) to formulate recommended procedures for QPA using diffraction data, and (v) to create a standard set of samples for future reference. The first paper (Madsenet al., 2001) covered the results of sample 1 (a simple three-phase mixture of corundum, fluorite and zincite). The remaining samples used in the round robin covered a wide range of analytical complexity, and presented a series of different problems to the analysts. These problems included preferred orientation (sample 2), the analysis of amorphous content (sample 3), microabsorption (sample 4), complex synthetic and natural mineral suites, along with pharmaceutical mixtures with and without an amorphous component. This paper forms the second part of the round-robin study and reports the results of samples 2 (corundum, fluorite, zincite, brucite), 3 (corundum, fluorite, zincite, silica flour) and 4 (corundum, magnetite, zircon), synthetic bauxite, natural granodiorite and the synthetic pharmaceutical mixtures (mannitol, nizatidine, valine, sucrose, starch). The outcomes of this second part of the round robin support the findings of the initial study. The presence of increased analytical problems within these samples has only served to exacerbate the difficulties experienced by many operators with the sample 1 suite. The major difficulties are caused by lack of operator expertise, which becomes more apparent with these more complex samples. Some of these samples also introduced the requirement for skill and judgement in sample preparation techniques. This second part of the round robin concluded that the greatest physical obstacle to accurate QPA for X-ray based methods is the presence of absorption contrast between phases (microabsorption), which may prove to be insurmountable in some circumstances.
    Print ISSN: 0021-8898
    Electronic ISSN: 1600-5767
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...