ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Institute of Physics (AIP)  (498)
  • American Chemical Society (ACS)
  • 2000-2004  (498)
  • 2002  (498)
  • 1
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Review of Scientific Instruments 73 (2002), S. 179-184 
    ISSN: 1089-7623
    Source: AIP Digital Archive
    Topics: Physics , Electrical Engineering, Measurement and Control Technology
    Notes: Thermal noise in the mirror substrates sets a most severe limit to the low-frequency sensitivity of the interferometric gravitational wave detectors presently under construction. The mechanical quality of the mirror substrates and the geometry of their suspension are shown to affect markedly the noise level of the detector output. High mechanical Q have been obtained for different large fused silica substrates under Virgo suspension conditions. Moreover, calcium fluoride substrates are shown to provide a more promising option for the design of future cryogenic, low thermal noise interferometers. © 2002 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 91 (2002), S. 624-632 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The deactivation effects of the lowest excited states of Er3+ and Ho3+ introduced in Er-or Ho-LiYF4 (YLF) crystals, codoped with Nd ions, were observed by the activator's fluorescence decays. In the case of Er:Nd:YLF, the 4I13/2→4I15/2 and 4I11/2→4I13/2 transitions at 1.5 and 2.7 μm, respectively, were analyzed. The 5I7→5I8 and 5I6→5I7 transitions at 2.1 and 2.9 μm, respectively, were investigated for the Ho:Nd:YLF system. Laser excitations generated by a tunable optical parametric oscillator were used in this investigation. The use of a resonant laser excitation to induce the fluorescence allowed accurate measurements of the donor fluorescence decay by a time-resolved infrared spectroscopic system with a time resolution of 0.5 μs. As a result, a general criterion for the migration mechanism, involved in the donor to acceptor energy transfer, was proposed and depends on a parameter R. This parameter was defined as the ratio between the transfer rate obtained from the best fit of the fluorescence decay and the theoretical transfer rate predicted by the diffusion model. It was observed that the donor to acceptor transfer is always dominated by a diffusion migration (R∼1) if the donor is in the second excited state, despite a great variation of the CDD/CDA ratio (from ∼1 to 371). Nevertheless, a discrete energy migration was found to dominate in the [Ho, Er]→Nd energy transfer when the first excited state of the activator is involved. In this case, the experimental value of the transfer rate is smaller than expected according to the hopping model. Introducing a finite trapping efficiency of an exciton migration in the hopping model, all the observed experimental results were explained. The presence of Nd ions, in addition to decreasing the lifetime of the first excited state of Er3+ and Ho3+ in YLF, also depopulates the second excited state (partially), depending on the Nd concentration used. © 2002 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 91 (2002), S. 4936-4943 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Thin CdTe layers embedded in ZnTe matrix grown by atomic layer epitaxy have been studied by time resolved spectroscopy and spatially resolved spectroscopy. The presence of Cd-rich dotlike islands in these CdTe nanostructures is shown by both atomic force microscopy and high resolution transmission electron microscopy. Zero-dimensional nature of excitons is shown both by the temperature dependence of the decay time and observation of sharp exciton lines in microphotoluminescence spectra. Zero-dimensional excitons probed by microphotoluminescence present a doublet structure linearly polarized along two orthogonal directions. This doublet structure is attributed to bright heavy-hole exciton states split by the local asymmetry of the localization potential. Reversible spectral shifts in the emission of some single quantum dots are observed on a time scale of hundreds of milliseconds. These small shifts can be attributed to the Stark effect caused by fluctuating electric fields and can significantly affect time-integrated transition linewidths. © 2002 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Review of Scientific Instruments 73 (2002), S. 650-653 
    ISSN: 1089-7623
    Source: AIP Digital Archive
    Topics: Physics , Electrical Engineering, Measurement and Control Technology
    Notes: The ECLISSE (ECR coupled to Laser Ion Source for charge State Enhancement) project started in 1999 with the aim to obtain an intense beam of highly charged ions (pulsed mode) by means of the coupling between a laser ion source (LIS) and an electron cyclotron resonance (ECR) ion source. The major points to be investigated appeared to be the coupling efficiency between the ion beam produced by the LIS and the ECR plasma, as well as the possibility to enhance the available charge state by an ECRIS with respect to the standard methods which are used to produce ion beams from solid samples (e.g., evaporation, sputtering). The calculations have confirmed that this concept may be effective, provided that the ion energy from the LIS is lower than a few hundred eV. The main features of the calculations will be shown, along with the results obtained in the off-line test facility at laser power densities below 1011 W/cm2. © 2002 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 9 (2002), S. 3625-3628 
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The nonlinear interaction between intense neutrino beams and sound waves in dense plasmas is considered. Accordingly, a Schrödinger-type equation is derived for the amplitude wave function of neutrinos interacting with a background plasma via the weak Fermi force. The neutrino driving (ponderomotive) force pushes the plasma electrons locally, thereby creating space charge electric fields through which the inertial ions are reinforced. It is shown that the nonlinearly coupled neutrinos and the ion sound perturbations are responsible for the formation of stationary envelope solitons and nonstationary shocks. The relevance of these nonlinear structures to supernova explosions is pointed out. © 2002 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Quiescent double barrier discharges (QDB) on DIII-D [Luxon et al., Fusion Technol. 8, Part 2A, 441 (1985)] exhibit near steady high performance (βNH∼7) with a quiescent H-mode edge, i.e., free of edge localized modes (ELMs), but with effective particle control and strongly peaked density profiles. These QDB discharges exhibit an internal transport barrier with low ion thermal transport despite incomplete turbulence suppression. Very short correlation lengths, which reduce the transport step size, however, characterize the residual turbulence. This observation is consistent with simulations using the GLF23 [Waltz et al., Phys. Plasmas 4, 2482 (1997)] model, which reproduce the core ion temperature profile even in the presence of finite turbulence. Increased retention of high-Z impurities is observed and core nickel concentrations (an intrinsic impurity in DIII-D) are as high as 0.3%. To quantify impurity transport, trace impurity injection has been performed in steady QDB discharges showing a fast influx followed by a slow pump out. The measured decay times of the core concentration of two nonrecycling impurities, F(Z=9) and Ca(Z=22), are 299 and 675 ms, respectively, while the energy confinement time is 111 ms. Time dependent analysis of neon influx yields both diffusivities and inward convection velocities significantly greater than neoclassical predictions in the same region of the plasma where measured ion thermal transport is near neoclassical predictions yet significant turbulence is observed. The boundary of these discharges is characterized by a saturated coherent magnetohydrodynamic mode, the edge harmonic oscillation, which takes the place of ELMs in facilitating particle control by allowing particle transport to the open field lines, where both wall- and cryopumping play a major role in particle exhaust. Hot (∼5 keV) ions observed in the outer scrape-off layer may enhance wall pumping. © 2002 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Sustained stabilization of the n=1 kink mode by plasma rotation at beta approaching twice the stability limit calculated without a wall has been achieved in DIII-D by a combination of error field reduction and sufficient rotation drive. Previous experiments have transiently exceeded the no-wall beta limit. However, demonstration of sustained rotational stabilization has remained elusive because the rotation has been found to decay whenever the plasma is wall stabilized. Recent theory [Boozer, Phys. Rev. Lett. 86, 5059 (2001)] predicts a resonant response to error fields in a plasma approaching marginal stability to a low-n kink mode. Enhancement of magnetic nonaxisymmetry in the plasma leads to strong damping of the toroidal rotation, precisely in the high-beta regime where it is needed for stabilization. This resonant response, or "error field amplification" is demonstrated in DIII-D experiments: applied n=1 radial fields cause enhanced plasma response and strong rotation damping at beta above the no wall limit but have little effect at lower beta. The discovery of an error field amplification has led to sustained operation above the no-wall limit through improved magnetic field symmetrization using an external coil set. The required symmetrization is determined both by optimizing the external currents with respect to the plasma rotation and by use of feedback to detect and minimize the plasma response to nonaxisymmetric fields as beta increases. Ideal stability analysis and rotation braking experiments at different beta values show that beta is maintained 50% higher than the no wall stability limit for durations greater than 1 s, and approaches beta twice the no-wall limit in several cases, with steady-state rotation levels. The results suggest that improved magnetic-field symmetry could allow plasmas to be maintained well above no-wall beta limit for as long as sufficient torque is provided. © 2002 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Measured turbulence characteristics (correlation lengths, spectra, etc.) in low-confinement (L-mode) and high-performance plasmas in the DIII-D tokamak [Luxon et al., Proceedings Plasma Physics and Controlled Nuclear Fusion Research 1986 (International Atomic Energy Agency, Vienna, 1987), Vol. I, p. 159] show many similarities with the characteristics determined from turbulence simulations. Radial correlation lengths Δr of density fluctuations from L-mode discharges are found to be numerically similar to the ion poloidal gyroradius ρθ,s, or 5–10 times the ion gyroradius ρs over the radial region 0.2〈r/a〈1.0. Comparison of these correlation lengths to ion temperature gradient gyrokinetic simulations (the UCLA-University of Alberta, Canada UCAN code [Sydora et al., Plasma Phys. Controlled Fusion 38, A281 (1996)]) shows that without zonal flows simulation values of Δr are very long, spanning much of the 65 cm minor radius. With zonal flows included, these decrease to near the measured values in both magnitude and radial behavior. In order to determine if Δr scaled as ρθ,s or 5–10 times ρs, an experiment was performed which modified ρθs while keeping other plasma parameters approximately fixed. It was found that the experimental Δr did not scale as ρθ,s, which was similar to low-resolution UCAN simulations. Finally, both experimental measurements and gyrokinetic simulations indicate a significant reduction in the radial correlation length from high-performance quiescent double barrier discharges, as compared to normal L-mode, consistent with reduced transport in these high-performance plasmas. © 2002 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The Z-pinch-driven hohlraum (ZPDH) [J. H. Hammer et al., Phys. Plasmas 6, 2129 (1999)] is a promising approach to high yield inertial confinement fusion currently being characterized in experiments on the Sandia Z accelerator [M. E. Cuneo et al., Phys. Plasmas 8, 2257 (2001)]. Simulations show that capsule radiation symmetry, a critical issue in ZPDH design, is governed primarily by hohlraum geometry, dual-pinch power balance, and pinch timing. In initial symmetry studies on Z without the benefit of a laser backlighter, highly-asymmetric pole-hot and equator-hot single Z-pinch hohlraum geometries were diagnosed using solid low density foam burnthrough spheres. These experiments demonstrated effective geometric control and prediction of polar flux symmetry at the level where details of the Z-pinch implosion and other higher order effects are not critical. Radiation flux symmetry achieved in Z double-pinch hohlraum configurations exceeds the measurement sensitivity of this self-backlit foam ball symmetry diagnostic. To diagnose radiation symmetry at the 2%–5% level attainable with present ZPDH designs, high-energy x rays produced by the recently-completed Z-Beamlet laser backlighter are being used for point-projection imaging of thin-wall implosion and symmetry capsules. © 2002 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Initial results from direct-drive spherical cryogenic target implosions on the 60-beam OMEGA laser system [T. R. Boehly, D. L. Brown, R. S. Craxton et al., Opt. Commun. 133, 495 (1997)] are presented. These experiments are part of the scientific base leading to direct-drive ignition implosions planned for the National Ignition Facility (NIF) [W. J. Hogan, E. I. Moses, B. E. Warner et al., Nucl. Fusion 41, 567 (2001)]. Polymer shells (1-mm diam with walls 〈3 μm) are filled with up to 1000 atm of D2 to provide 100-μm-thick ice layers. The ice layers are smoothed by IR heating with 3.16-μm laser light and are characterized using shadowgraphy. The targets are imploded by a 1-ns square pulse with up to ∼24 kJ of 351-nm laser light at a beam-to-beam rms energy balance of 〈3% and full-beam smoothing. Results shown include neutron yield, secondary neutron and proton yields, the time of peak neutron emission, and both time-integrated and time-resolved x-ray images of the imploding core. The experimental values are compared with 1-D numerical simulations. The target with an ice-layer nonuniformity of σrms=9 μm showed 30% of the 1-D predicted neutron yield. These initial results are encouraging for future cryogenic implosions on OMEGA and the NIF. © 2002 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...