ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Geophysics  (2)
  • Chemistry
  • 2000-2004  (2)
  • 2001  (2)
Collection
Years
  • 2000-2004  (2)
Year
  • 1
    Publication Date: 2004-12-03
    Description: This chapter is concerned with two types of radiometric measurements essential to verify atmospheric correction algorithms and to calibrate vicariously satellite ocean color sensors. The first type is a photometric measurement of the direct solar beam to determine the optical thickness of the atmosphere. The intensity of the solar beam can be measured directly, or obtained indirectly from measurements of diffuse global upper hemispheric irradiance. The second type is a measurement of the solar aureole and sky radiance distribution using a CCD camera, or a scanning radiometer viewing in and perpendicular to the solar principal plane. From the two types of measurements, the optical properties of aerosols, highly variable in space and time, can be derived. Because of the high variability, the aerosol properties should be known at the time of satellite overpass. Atmospheric optics measurements, however, are not easy to perform at sea, from a ship or any platform. This complicates the measurement protocols and data analysis. Some instrumentation cannot be deployed at sea, and is limited to island and coastal sites. In the following, measurement protocols are described for radiometers commonly used to measure direct atmospheric transmittance and sky radiance, namely standard sun photometers, fast-rotating shadow-band radiometers, automated sky scanning systems, and CCD cameras. Methods and procedures to analyze and quality control the data are discussed, as well as proper measurement strategies for evaluation of atmospheric correction algorithms and satellite-derived ocean color.
    Keywords: Geophysics
    Type: In Situ Aerosol Optical Thinkness Collected by the SIMBIOS Program (1997-2000): Protocols, and and Data QC and Analysis; 26-42; NASA/TM-2001-209982
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-08-29
    Description: Quasi-decadal oscillations (QDO) have been observed in the stratosphere and have been linked to the equatorial Quasi-Biennial Oscillation (QBO) and to the 11-year solar activity cycle. With the use of a 2D version of our Numerical Spectral Model (NSM) that incorporates Hines' Doppler Spread Parameterization (DSP) for gravity waves (GW), we demonstrate that beat periods between 9 and 11 years can be generated by the QBO as it interacts through GW filtering with the Annual Oscillation (AO) and Semi-annual Oscillation (SAO). Results are discussed from computations covering up to 50 years, and our analyses leads to the following conclusions. The QDO as a stand-alone signature is largely confined to the upper mesosphere. Its largest signature appears in the form of amplitude modulations of the QBO, AO and SAO, and these extend into the lower stratosphere. The downward control that characterizes the QBO apparently comes into play, and the longer time constants for diffusion and radiative loss at lower altitudes facilitate the QDO response. Although excited by the QBO, which is confined to low latitudes, the QDO is shown to extend to high latitudes. The effect is particularly large for the QBO with period around 33.5 month (near the upper limit of observations), which interacts with the SAO to produce a hemispherically symmetric QDO. Our analysis indicates that the QDO is transferred to high latitudes by the meridional circulation, which prominently exhibits this periodicity particularly in the amplitude modulation of the AO.
    Keywords: Geophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...