ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Institute of Physics (AIP)  (2)
  • American Chemical Society  (1)
  • Blackwell Publishing Ltd  (1)
  • Institute of Physics (IOP)
  • MDPI Publishing
  • 2010-2014
  • 1995-1999  (4)
  • 1990-1994
  • 1999  (4)
Collection
Publisher
Years
  • 2010-2014
  • 1995-1999  (4)
  • 1990-1994
Year
  • 1
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 6 (1999), S. 335-342 
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Nonlinear evolution of one-dimensional planar perturbations in an optically thin, radiatively cooling medium in the long-wavelength limit is studied numerically. The accepted cooling function generates, in thermal equilibrium, a bistable equation of state P(ρ). The unperturbed state is taken close to the upper (low-density) unstable state with infinite compressibility (dP/dρ=0). The evolution is shown to proceed in three different stages. At the first stage, pressure and density set in the equilibrium equation of state, and velocity profile steepens gradually, as in the case of pressure-free flows. At the second stage, those regions of the flow where anomalous pressure (i.e., with negative compressibility) holds create a velocity profile sharper than in the pressure-free case, which in turn results in formation of a very narrow (short-wavelength) region where gas separates the equilibrium equation of state and pressure equilibrium sets in rapidly. At this stage, the variation in pressure between the narrow dense region and the extended environment does not exceed more than 0.01 of the unperturbed value. At the third stage, gas in the short-wavelength region reaches the second (high-density) stable state, and pressure balance establishes through the flow, with pressure equal to the one in the unperturbed state. In external (long-wavelength) regions, gas forms slow isobaric inflow toward the short-wavelength layer. The duration of these stages decreases when the ratio of the acoustic time to the radiative cooling time increases. The limits in which nonlinear evolution of thermally unstable long-wavelength perturbations develops in isobaric regime are obtained. © 1999 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 110 (1999), S. 10095-10112 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: We have developed a self-consistent description of an interface between a metal and a molecular liquid by combination of the density functional theory in the Kohn–Sham formulation (KS DFT) for the electronic structure, and the three-dimensional generalization of the reference interaction site model (3D RISM) for the classical site distribution profiles of liquid. The electron and classical subsystems are coupled in the mean field approximation. The procedure takes account of many-body effects of dense fluid on the metal–liquid interactions by averaging the pseudopotentials of liquid molecules over the classical distributions of the liquid. The proposed approach is substantially less time-consuming as compared to a Car–Parrinello-type simulation since it replaces molecular dynamics with the integral equation theory of molecular liquids. The calculation has been performed for pure water at normal conditions in contact with the (100) face cubic centered (fcc) surface of a metal roughly modeled after copper. The results are in good agreement with the Car–Parrinello simulation for the same metal model. The shift of the Fermi level due to the presence of water conforms with experiment. The electron distribution near an adsorbed water molecule is affected by dense water, and so the metal–water attraction follows the shapes of the metal effective electrostatic potential. For the metal model employed, it is strongest at the hollow site adsorption positions, and water molecules are adsorbed mainly at the hollow and bridge site positions rather than over metal atoms. Layering of water molecules near the metal surface is found. In the first hydration layer, adsorbed water molecules are oriented in parallel to the surface or tilted with hydrogens mainly outwards the metal. This orientation at the potential of zero charge agrees with experiment. © 1999 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of applied ichthyology 15 (1999), S. 0 
    ISSN: 1439-0426
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...